
ISO/IEC 14496-2:1999/FDAM 1:1999(E)

30

The triangle tree record contains the structure of a triangle spanning tree which links all the triangles of the
corresponding connected component forming a simple polygon. The 3D mesh is represented in a triangulated form
in the bitstream, which also contains the information necessary to reconstruct the original faces. The vertex graph
record contains the information necessary to stitch pairs of boundary edges of the simple polygon to reconstruct the
original connectivity, not only within the current connected component, but also to previously decoded connected
components. The connectivity information is categorized as global information (per connected component) and
local information (per triangle). The global information is stored in the Vertex Graph and Triangle Tree records. The
local information is stored in the Triangle Data record. The triangle data is arranged on a per triangle basis, where
the ordering of the triangles is determined by the traversal of the triangle tree.

Data for triangle #1 Data for triangle #2 ... Data for triangle #nT

The data for a given triangle is organized as follows:

marching
edge

td_orientation polygon_ed
ge

coord normal color texCoord

The marching edge, td_orientation and polygon_edge constitute the per triangle connectivity information. The other
fields contain information to reconstruct the vertex coordinates (coord) and optionally, normal, color, and texture
coordinate (texCoord) information.

If the 3D mesh is encoded in hierarchical mode, each Forest Split data block is composed of an optional pre -
smoothing data block, an optional post -smoothing data block, a pre-update data block, an optional smoothing
constraints data block, a post-update data block, and an optional other-update data block.

Pre-smoothing Post-smoothing Pre-update Constraints Post-update Other-update

The pre -smoothing data block contains the paramete rs used to apply a smoothing step as a global predictor for
vertex coordinates. The post-smoothing data block contains the parameters used to apply a smoothing step to the
vertex coordinates to remove quantisation artifacts. The pre update data block contains the information necessary
to update the connectivity, and the property data updates for properties bound per-face and per-corner to the new
faces created by the connectivity update. The smoothing constraints data block contains information used to
perform the smoothing steps with sharp edge discontinuities and fixed vertices. After the connectivity update is
applied, the pre-smoothing operation specified by the parameters stored in the pre -smoothing data block is applied
as a global predictor for the ve rtex coordinates. The post update data block contains tree loop vertex coordinate
updates, with respect to the vertex coordinates predicted by the pre-smoothing step, if applied; normal, color, and
texture coordinate updates for properties bound per-vertex to tree loop vertices; normal, and color updates for
properties bound per-face to tree loop faces; and normal, color, and texture coordinate updates for properties
bound per-corner to tree loop corners. The other-update data block contains vertex coordinate updates and
property updates for all the vertices, faces, and corners not updated by data included in the post-update data block.

6.2 Visual bitstream syntax

6.2.1 Start codes

Start codes are specific bit patterns that do not otherwise occur in the video stream.

Each start code consists of a start code prefix followed by a start code value. The start code prefix is a string of
twenty three bits with the value zero followed by a single bit with the value one. The start code prefix is thus the bit
string ‘ 0000 0000 0000 0000 0000 0001’.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

31

The start code value is an eight bit integer which identifies the type of start code. Many types of start code have
just one start code value. However video_object_start_code and video_object_layer_start_code are represented
by many start code values.

All start codes shall be byte aligned. This shall be achieved by first inserting a bit with the value zero and then, if
necessary, inserting bits with the value one before the start code prefix such that the first bit of the start code prefix
is the first (most significant) bit of a byte. For stuffing of 1 to 8 bits, the codewords are as follows in Table 6-2 .

Table 6-2-- Stuffing codewords

Bits to be stuffed Stuffing Codeword
1 0
2 01
3 011

4 0111
5 01111
6 011111
7 0111111
8 01111111

Table 6-3 defines the start code values for all start codes used in the visual bitstream.

Table 6-3 — Start code values

name start code value
(hexadecimal)

video_object_start_code 00 through 1F
video_object_layer_start_code 20 through 2F
reserved 30 through AF
visual_object_sequence_start_code B0
visual_object_sequence_end_code B1
user_data_start_code B2
group_of_vop_start_code B3
video_session_error_code B4
visual_object_start_code B5
vop_start_code B6
reserved B7-B9
fba_object_start_code BA
fba_object_plane_start_code BB
mesh_object_start_code BC
mesh_object_plane_start_code BD
still_texture_object_start_code BE

texture_spatial_layer_start_code BF
texture_snr_layer_start_code C0
texture_tile_start_code C1
texture_shape_layer_start_code C2
reserved C3-C5
System start codes (see note) C6 through FF
NOTE Syst em start codes are defined in ISO/IEC 14496-1

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

32

The use of the start codes is defined in the following syntax description with the exception of the
video_session_error_code. The video_session_error_code has been allocated for use by a media interface to
in dicate where uncorrectable errors have been detected.

This syntax for visual bitstreams defines two types of information:

• 1. Configuration information

• a. Global configuration information, referring to the whole group of visual objects that will be
simultaneously decoded and composited by a decoder (VisualObjectSequence()).

• b. Object configuration information, referring to a single visual object (VO). This is associated with
VisualObject().

• c.Object layer configuration information, referring to a single layer of a single visual object (VOL)
VisualObjectLayer()

• 2. Elementary stream data, containing the data for a single layer of a visual object.

Elementary Stream
Visual Object 1

Layer 1

Elementary Stream
Visual Object 1

Layer 2

Elementary Stream
Visual Object 2

Layer 1

VO 1
VOL 1
Header

VO 1
VOL 2
Header

VO 1
Header

VO 2
VOL 1
Header

Visual Object
Sequence
Header

VO 2
Header

Figure 6-11 -- Example Visual Information – Logical Structure

Configuration Information
in containers provided by
MPEG-4 Systems

Elementary Stream
Visual Object 1 Layer 1

Elementary Stream
Visual Object 1 Layer 2

Elementary Stream
Visual Object 2 Layer 1

VO 1
VOL 1
Header

VO 1
VOL 2
Header

VO 1
Header

VO 2
VOL 1
Header

Visual Object
Sequence
Header

VO 2
Header

MPEG-4 Systems

Figure 6-12 -- Example Visual Bitstream – Separate Configuration Information / Elementary Stream.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

33

Elementary Stream
Visual Object 1

Layer 1

Elementary Stream
Visual Object 1

Layer 2

VO 1
VOL 1
Header

VO 1
VOL 2
Header

VO 1
Header

Visual Object
Sequence
Header

VO 1
Header

Visual Object
Sequence
Header

Elementary Stream
Visual Object 2

Layer 1

VO 2
VOL 1
Header

VO 2
Header

Visual Object
Sequence
Header

Figure 6-13 -- Example Visual Bitstream – Combined Configuration Information / Elementary Stream

The following functions are entry points for elementary streams, and entry into these functions defines the
breakpoint between configuration information and elementary streams:

• 1. Group_of_VideoObjectPlane(),

• 2. VideoObjectPlane(),

• 3. video_plane_with_short_header(),

• 4. MeshObject(),

• 5. fba_object().

For still texture objects, configuration information ends and elementary stream data begins in StilTextureObject()
immediately before the first call to wavelet_dc_decode(), as indicated by the comment in subclause 6.2.8.

There is no overlap of syntax between configuration information and elementary streams.

The configuration information contains all data that is not part of an elementary stream, including that defined by
VisualObjectSequence(), VisualObject() and VideoObjectLayer().

ISO/IEC 14496 -2 does not provide for the multiplexing of multiple elementary streams into a single bitstream. One
visual bitstream contains exactly one elementary stream, which describes one layer of one visual object. A visual
decoder must conceptually have a separate entry port for each layer of each object to be decoded.

Visual objects coded in accordance with this Part may be carried within a Systems bitstream as defined by ISO/IEC
14496 -1. The coded visual objects may also be free standing or carried within other types of systems.
Configuration information may be carried separately from or combined with elementary stream data:

1. Separate Configuration / Elementary Streams (e.g. Inside ISO/IEC 14496-1 Bitstreams)

When coded visual objects are carried within a Systems bitstream defined by ISO/IEC 14496-1, configuration
information and elementary stream data are always carried separately. Configuration information and elementary
streams follow the syntax below, subject to the break points between them defined above. The Systems
specification ISO/IEC 14496 -1 defines containers that are used to carry Visual Object Sequence, Visual Object and
Video Object Layer configuration information. For video objects one container is used for each layer for each
object. This container carries a Visual Object Sequence header, a Visual Object header and a Video Object Layer
header. For other types of visual objects, one container per visual object is used. This container carries a Visual
Object Sequence header and a Visual Object header. The Visual Object Sequence Header must be identical for all

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

34

visual streams input simultaneously to a decoder. The Visual Object Headers for each layer of a multilayer object
must be identical.

2. Combined Configuration / Elementary Streams

The elementary stream data associated with a single layer may be wrapped in configuration information defined in
accordance with the syntax below. A visual bitstream may contain at most one instance of each of
VisualObjectSequence(), VisualObject() and VideoObjectLayer(), with the exception of repetition of the Visual
Object Sequence Header, the Visual Object Header and the Video Object Layer Header as described below. The
Visual Object Sequence Header must be identical for all visual streams input simultaneously to a decoder. The
Visual Object Headers for each layer of a multilayer object must be identical.

The Visual Object Sequence Header, the Visual Object Header and the Video Object Layer Header may be
repeated in a single visual bitstream. Repeating these headers enables random access into the visual bitstream
and recovery of these headers when the original headers are corrupted by errors. This header repetition is used
only when visual_object_type in the Visual Object Header indicates that visual object type is video. (i.e.
visual_object_type==”video ID”) All of the data elements in the Visual Object Sequence Header, the Visual Object
Header and the Video Object Layer Header repeated in a visual bitstream shall have the same value as in the
original headers, except that first_half_vbv_occupancy and latter_half_vbv_occupancy may be changed to specify
the VBV occupancy just before the removal of the first VOP following the repeated Video Object Layer Header.

6.2.2 Visual Object Sequence and Visual Object

VisualObjectSequence() { No. of bits Mnemonic

do {

visual_object_sequence_start_code 32 bslbf

profile_and_level_indication 8 uimsbf
while (next_bits()== user_data_start_code){

user_data()
}
VisualObject()

} while (next_bits() != visual_object_sequence_end_code)

visual_object_sequence_end_code 32 bslbf

}

VisualObject() { No. of bits Mnemonic

visual_object_start_code 32 bslbf

is_visual_object_identifier 1 uimsbf
if (is_visual_object_identifier) {

visual_object_verid 4 uimsbf
visual_object_priority 3 uimsbf

}

visual_object_type 4 uimsbf
if (visual_object_type == “video ID” || visual_object_type == “ still texture

ID“) {
video_signal_type()

}
next_start_code()
while (next_bits()== user_data_start_code){

user_data()
}
if (visual_object_type == “video ID”) {

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

35

video_object_start_code 32 bslbf
VideoObjectLayer()

}
else if (visual_object_type == “ still texture ID”) {

StillTextureObject()
}
else if (visual_object_type == “mesh ID”) {

MeshObject()
}
else if (visual_object_type == “FBA ID”) {

FBAObject()
}
else if (visual_object_type == “ 3D mesh ID”) {

3D_Mesh_Object()
}
if (next_bits() != “0000 0000 0000 0000 0000 0001”)

next_start_code()
}

video_signal_type() { No. of bits Mnemonic

video_signal_type 1 bslbf
if (video_signal_type) {

video_format 3 uimsbf

video_range 1 bslbf

colour_description 1 bslbf
if (colour_description) {

colour_primaries 8 uimsbf

transfer_characteristics 8 uimsbf

matrix_coefficients 8 uimsbf
}

}
}

6.2.2.1 User data

user_data() { No. of bits Mnemonic

user_data_start_code 32 bslbf
while(next_bits() != ‘0000 0000 0000 0000 0000 0001’) {

user_data 8 uimsbf
}

}

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

36

6.2.3 Video Object Layer

VideoObjectLayer() { No. of bits Mnemonic

if(next_bits() == video_object_layer_start_code) {
short_video_header = 0

video_object_layer_start_code 32 bslbf

random_accessible_vol 1 bslbf

video_object_type_indication 8 uimsbf

is_object_layer_identifier 1 uimsbf
if (is_object_layer_identifier) {

video_object_layer_verid 4 uimsbf

video_object_layer_priority 3 uimsbf
}

aspect_ratio_info 4 uimsbf
if (aspect_ratio_info == “extended_PAR”) {

par_width 8 uimsbf

par_height 8 uimsbf
}

vol_control_parameters 1 bslbf
if (vol_control_parameters) {

chroma_format 2 uimsbf

low_delay 1 uimsbf

vbv_parameters 1 blsbf

if (vbv_parameters) {
first_half_bit_rate 15 uimsbf
marker_bit 1 bslbf
latter_half_bit_rate 15 uimsbf
marker_bit 1 bslbf

first_half_vbv_buffer_size 15 uimsbf

marker_bit 1 bslbf

latter_half_vbv_buffer_size 3 uimsbf

first_half_vbv_occupancy 11 uimsbf

marker_bit 1 blsbf

latter_half_vbv_occupancy 15 uimsbf

marker_bit 1 blsbf
}

}

video_object_layer_shape 2 uimsbf
if (video_object_layer_shape == "grayscale"

&& video_object_layer_verid != ‘0001’)

video_object_layer_shape_extension 4 uimsbf

marker_bit 1 bslbf

vop_time_increment_resolution 16 uimsbf
marker_bit 1 bslbf
fixed_vop_rate 1 bslbf
if (fixed_vop_rate)

 fixed_vop_time_increment 1-16 uimsbf
if (video_object_layer_shape != “binary only”) {

if (video_object_layer_shape == “ rectangular”) {

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

37

marker_bit 1 bslbf

video_object_layer_width 13 uimsbf

marker_bit 1 bslbf

video_object_layer_height 13 uimsbf

marker_bit 1 bslbf
}

interlaced 1 bslbf

obmc_disable 1 bslbf
if (video_object_layer_verid == ‘0001’)

sprite_enable 1 bslbf
else

sprite_enable 2 uimsbf
if (sprite_enable == “ static” || sprite_enable == “GMC”) {

if (sprite_enable != “GMC”) {

sprite_width 13 uimsbf

marker_bit 1 bslbf

sprite_height 13 uimsbf
marker_bit 1 bslbf
sprite_left_coordinate 13 simsbf
marker_bit 1 bslbf
sprite_top_coordinate 13 simsbf

marker_bit 1 bslbf
}

no_of_sprite_warping_points 6 uimsbf

sprite_warping_accuracy 2 uimsbf

sprite_brightness_change 1 bslbf
if (sprite_enable != “GMC”)

low_latency_sprite_enable 1 bslbf
}
if (video_object_layer_verid != ‘0001’ &&

video_object_layer_shape != ”rectangular”)

sadct_disable 1 bslbf

not_8_bit 1 bslbf
if (not_8_ bit) {

quant_precision 4 uimsbf

bits_per_pixel 4 uimsbf
}
if (video_object_layer_shape==”grayscale”) {

no_gray_quant_update 1 bslbf
composition_method 1 bslbf

linear_composition 1 bslbf
}

quant_type 1 bslbf
if (quant_type) {

load_intra_quant_mat 1 bslbf
if (load_intra_quant_mat)

intra_quant_mat 8*[2-64] uimsbf

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

38

load_nonintra_quant_mat 1 bslbf
if (load_nonintra_quant_mat)

nonintra_quant_mat 8*[2-64] uimsbf
if(video_object_layer_shape==”grayscale”) {

for(i=0; i<aux_comp_count; i++) {

load_intra_quant_mat_grayscale 1 bslbf
if(load_intra_quant_mat_grayscale)

intra_quant_mat_grayscale[i] 8*[2-64] uimsbf

load_nonintra_quant_mat_grayscale 1 bslbf
if(load_nonintra_quant_mat_grayscale)

nonintra_quant_mat_grayscale [i] 8*[2-64] uimsbf
}

}
}
if (video_object_layer_verid != ‘0001’)

quarter_sample 1 bslbf

complexity_estimation_disable 1 bslbf
if (!complexity_estimation_disable)

define_vop_complexity_estimation_header()

resync_marker_disable 1 bslbf

data_partitioned 1 bslbf
if(data_partitioned)

reversible_vlc 1 bslbf

if(video_object_layer_verid != ’0001’) {
newpred_enable 1 bslbf
if (newpred_enable) {

requested_upstream_message_type 2 uimsbf
newpred_segment_type 1 bslbf

}

reduced_resolution_vop_enable 1 bslbf
}
scalability 1 bslbf
if (scalability) {

hierarchy_type 1 bslbf

ref_layer_id 4 uimsbf

ref_layer_sampling_direc 1 bslbf

hor_sampling_factor_n 5 uimsbf

hor_sampling_factor_m 5 uimsbf

vert_sampling_factor_n 5 uimsbf

vert_sampling_factor_m 5 uimsbf

enhancement_type 1 bslbf

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

39

if(video_object_layer == “ binary” &&
hierarchy_type== ‘0’) {

use_ref_shape 1 bslbf

use_ref_texture 1 bslbf

shape_hor_sampling_factor_n 5 uimsbf

shape_hor_sampling_factor_m 5 uimsbf

shape_vert_sampling_factor_n 5 uimsbf

shape_vert_sampling_factor_m 5 uimsbf
}

}
}

else {
if(video_object_layer_verid !=”0001”) {

scalability 1 bslbf
if(scalability) {

shape_hor_sampling_factor_n 5 uimsbf

shape_hor_sampling_factor_m 5 uimsbf

shape_vert_sampling_factor_n 5 uimsbf

shape_vert_sampling_factor_m 5 uimsbf
}

}

resync_marker_disable 1 bslbf
}
next_start_code()
while (next_bits()== user_data_start_code){

user_data()
}
if (sprite_enable == “static” && !low_latency_sprite_enable)

VideoObjectPlane()
do {

if (next_bits() == group_of_vop_start_code)
Group_of_VideoObjectPlane()

VideoObjectPlane()
} while ((next_bits() == group_of_vop_start_code) ||

(next_bits() == vop_start_code))
} else {

short_video_header = 1
do {

video_plane_with_short_header()
} while(next_bits() == short_video_start_marker)

}

}

define_vop_complexity_estimation_header() { No. of bits Mnemonic

estimation_method 2 uimsbf

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

40

if (estimation_method ==’00’ || estimation_method == ‘01’) {
shape_complexity_estimation_ disable 1
if (!shape_complexity_estimation_disable) { bslbf

opaque 1 bslbf

transparent 1 bslbf

intra_cae 1 bslbf

inter_cae 1 bslbf

no_update 1 bslbf

upsampling 1 bslbf
}

texture_complexity_estimation_set_1_disable 1 bslbf
if (!texture_complexity_estimation_set_1_disable) {

intra_blocks 1 bslbf

inter_blocks 1 bslbf

inter4v_blocks 1 bslbf

not_coded_blocks 1 bslbf
}

marker_bit 1 bslbf

texture_complexity_estimation_set_2_disable 1 bslbf
if (!texture_complexity_ estimation_set_2_disable) {

dct_coefs 1 bslbf

dct_lines 1 bslbf

vlc_symbols 1 bslbf

vlc_bits 1 bslbf
}
motion_compensation_complexity_disable 1 bslbf
If (!motion_compensation_complexity_disable) {

apm 1 bslbf

npm 1 bslbf

interpolate_mc_q 1 bslbf

forw_back_mc_q 1 bslbf

halfpel2 1 bslbf

halfpel4 1 bslbf
}

marker_bit 1 bslbf
if(estimation_method == ‘01’) {

version2_complexity_estimation_disable 1 bslbf
if (!version2_complexity_estimation_disable) {

sadct 1 bslbf

quarterpel 1 bslbf
}

}
}

}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

41

6.2.4 Group of Video Object Plane

Group_of_VideoObjectPlane() { No. of bits Mnemonic

group_of_vop_start_code 32 bslbf

time_code 18

closed_gov 1 bslbf

broken_link 1 bslbf
next_start_code()
while (next_bits()== user_data_start_code){

user_data()
}

}

6.2.5 Video Object Plane and Video Plane with Short Header

VideoObjectPlane() { No. of bits Mnemonic

vop_start_code 32 bslbf

vop_coding_type 2 uimsbf
do {

modulo_time_base 1 bslbf
} while (modulo_time_base != ‘0’)

marker_bit 1 bslbf

vop_time_increment 1-16 uimsbf

marker_bit 1 bslbf

vop_coded 1 bslbf
if (vop_coded == ’0’) {

next_start_code()
return()

}
if (newpred_enable) {

vop_id 4-15 uimsbf

vop_id_for_prediction_indication 1 bslbf
if (vop_id_for_prediction_indication)

vop_id_for_prediction 4-15 uimsbf

marker_bit 1 bslbf
}
if ((video_object_layer_shape != “ binary only”) &&

(vop_coding_type == “P” ||
(vop_coding_type == “S” && sprite_enable == “ GMC”)))

vop_rounding_type 1 bslbf
if ((reduced_resolution_vop_enable) &&

(video_object_layer_shape == “rectangular”) &&
((vop_coding_type == “P”) || (vop_coding_type == “ I”)))

vop_reduced_resolution 1 bslbf
if (video_object_layer_shape != “rectangular”) {

if(!(sprite_enable == “static” && vop_coding_type == “I”)) {

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

42

vop_width 13 uimsbf
marker_bit 1 bslbf
vop_height 13 uimsbf
marker_bit 1 bslbf

vop_horizontal_mc_spatial_ref 13 simsbf

marker_bit 1 bslbf

vop_vertical_mc_spatial_ref 13 simsbf

marker_bit 1 bslbf
}
if ((video_object_layer_shape != “ binary only”) &&

scalability && enhancement_type)

background_composition 1 bslbf

change_conv_ratio_disable 1 bslbf

vop_constant_alpha 1 bslbf
if (vop_constant_alpha)

vop_constant_alpha_value 8 bslbf
}
if (video_object_layer_shape != ‘’binary only‘’)

if (!complexity_estimation_disable)
read_vop_complexity_estimation_header()

if (video_object_layer_shape != “ binary only”) {
intra_dc_vlc_thr 3 uimsbf
if (interlaced) {

top_field_first 1 bslbf

alternate_vertical_scan_flag 1 bslbf
}

}
if ((sprite_enable ==“ static” || sprite_enable==“GMC”) &&

vop_coding_type == “S”) {
if (no_of_sprite_warping_points > 0)

sprite_trajectory()
if (sprite_brightness_change)

brightness_change_factor()
if(sprite_enable == “static”) {

if (sprite_transmit_mode != “ stop”
&& low_latency_sprite_enable) {
do {

sprite_transmit_mode 2 uimsbf
if ((sprite_transmit_mode == “piece”) ||

(sprite_transmit_mode == “update”))
decode_sprite_piece()

} while (sprite_transmit_mode != “ stop” &&
sprite_transmit_mode != “pause”)

}
next_start_code()
return()

}
}
if (video_object_layer_shape != “ binary only”) {

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

43

vop_quant 3-9 uimsbf
if(video_object_layer_shape==”grayscale”)
 for(i=0; i<aux_comp_count; i++)

vop_alpha_quant[i] 6 uimsbf
if (vop_coding_type != “ I”)

vop_fcode_forward 3 uimsbf
if (vop_coding_type == “B”)

vop_fcode_backward 3 uimsbf
if (!scalability) {

if (video_object_layer_shape != “rectangular”
&& vop_coding_type != “I ”)

vop_shape_coding_type 1 bslbf
motion_shape_texture()
while (nextbits_bytealigned() == resync_marker) {

video_packet_header()
motion_shape_texture()

}
}
else {

if (enhancement_type) {

load_backward_shape 1 bslbf
if (load_backward_shape) {

backward_shape_width 13 uimsbf

marker_bit 1 bslbf

backward_shape_ height 13 uimsbf

marker_bit 1 bslbf

backward_shape_horizontal_mc_spatial_ref 13 simsbf

marker_bit 1 bslbf

backward_shape_vertical_mc_spatial_ref 13 simsbf
backward_shape()

load_forward_shape 1 bslbf
if (load_forward_shape) {

forward_shape_width 13 uimsbf

marker_bit 1 bslbf

forward_shape_height 13 uimsbf

marker_bit 1 bslbf
forward_shape_horizontal_mc_spatial_ref 13 simsbf
marker_bit 1 bslbf
forward_shape_vertical_mc_spatial_ref 13 simsbf
forward_shape()

}
}

}

ref_select_code 2 uimsbf
combined_motion_shape_texture()

}
}

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

44

else {

combined_motion_shape_texture()
while (nextbits_bytealigned() == resync_marker) {

video_packet_header()
combined_motion_shape_texture ()

}
}
next_start_code()

}

6.2.5.1 Complexity Estimation Header

read_vop_complexity_estimation_header() { No. of bits Mnemonic

if (estimation_method==’00’) {
if (vop_coding_type==“ I”) {

if (opaque) dcecs_opaque 8 uimsbf

if (transparent) dcecs_transparent 8 uimsbf
if (intra_cae) dcecs_intra_cae 8 uimsbf
if (inter_cae) dcecs_inter_cae 8 uimsbf
if (no_update) dcecs_no_update 8 uimsbf
if (upsampling) dcecs_upsampling 8 uimsbf
if (intra_blocks) dcecs_intra_blocks 8 uimsbf
if (not_coded_blocks) dcecs_not_coded_blocks 8 uimsbf
if (dct_coefs) dcecs_dct_coefs 8 uimsbf
if (dct_lines) dcecs_dct_lines 8 uimsbf
if (vlc_symbols) dcecs_vlc_symbols 8 uimsbf
if (vlc_bits) dcecs_vlc_bits 4 uimsbf
if (sadct) dcecs_sadct 8 uimsbf

}
if (vop_coding_type==“ P”) {

if (opaque) dcecs_opaque 8 uimsbf
if (transparent) dcecs_transparent 8 uimsbf
if (intra_cae) dcecs_intra_cae 8 uimsbf
if (inter_cae) dcecs_inter_cae 8 uimsbf
if (no_update) dcecs_no_update 8 uimsbf
if (upsampling) dcecs_upsampling 8 uimsbf
if (intra) dcecs_intra_blocks 8 uimsbf
if (not_coded) dcecs_not_coded_blocks 8 uimsbf
if (dct_coefs) dcecs_dct_coefs 8 uimsbf
if (dct_lines) dcecs_dct_lines 8 uimsbf

if (vlc_symbols) dcecs_vlc_symbols 8 uimsbf
if (vlc_bits) dcecs_vlc_bits 4 uimsbf
if (inter_blocks) dcecs_inter_blocks 8 uimsbf
if (inter4v_blocks) dcecs_inter4v_blocks 8 uimsbf
if (apm) dcecs_apm 8 uimsbf
if (npm) dcecs_npm 8 uimsbf
if (forw_back_mc_q) dcecs_forw_back_mc_q 8 uimsbf

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

45

if (halfpel2) dcecs_halfpel2 8 uimsbf
if (halfpel4) dcecs_halfpel4 8 uimsbf
if (sadct) dcecs_sadct 8 uimsbf
if (quarterpel) dcecs_quarterpel 8 uimsbf

}
if (vop_coding_type==“B”) {

if (opaque) dcecs_opaque 8 uimsbf
if (transparent) dcecs_transparent 8 uimsbf
if (intra_cae) dcecs_intra_cae 8 uimsbf
if (inter_cae) dcecs_inter_cae 8 uimsbf
if (no_update) dcecs_no_update 8 uimsbf
if (upsampling) dcecs_upsampling 8 uimsbf
if (intra_blocks) dcecs_intra_blocks 8 uimsbf
if (not_coded_blocks) dcecs_not_coded_blocks 8 uimsbf
if (dct_coefs) dcecs_dct_coefs 8 uimsbf
if (dct_lines) dcecs_dct_lines 8 uimsbf

if (vlc_symbols) dcecs_vlc_symbols 8 uimsbf
if (vlc_bits) dcecs_vlc_bits 4 uimsbf
if (inter_blocks) dcecs_inter_blocks 8 uimsbf
if (inter4v_blocks) dcecs_inter4v_blocks 8 uimsbf
if (apm) dcecs_apm 8 uimsbf
if (npm) dcecs_npm 8 uimsbf
if (forw_back_mc_q) dcecs_forw_back_mc_q 8 uimsbf
if (halfpel2) dcecs_halfpel2 8 uimsbf
if (halfpel4) dcecs_halfpel4 8 uimsbf
if (interpolate_mc_q) dcecs_interpolate_mc_q 8 uimsbf
if (sadct) dcecs_sadct 8 uimsbf
if (quarterpel) dcecs_quarterpel 8 uimsbf

}
if (vop_coding_type==‘S’&& sprite_enable == “static”) {

if (intra_blocks) dcecs_intra_blocks 8 uimsbf
if (not_coded_blocks) dcecs_not_coded_blocks 8 uimsbf
if (dct_coefs) dcecs_dct_coefs 8 uimsbf
if (dct_lines) dcecs_dct_lines 8 uimsbf
if (vlc_symbols) dcecs_vlc_symbols 8 uimsbf
if (vlc_bits) dcecs_vlc_bits 4 uimsbf
if (inter_blocks) dcecs_inter_blocks 8 uimsbf
if (inter4v_blocks) dcecs_inter4v_blocks 8 uimsbf
if (apm) dcecs_apm 8 uimsbf
if (npm) dcecs_npm 8 uimsbf

if (forw_back_mc_q) dcecs_forw_back_q 8 uimsbf
if (halfpel2) dcecs_halfpel2 8 uimsbf
if (halfpel4) dcecs_halfpel4 8 uimsbf
if (interpolate_mc_q) dcecs_interpolate_mc_q 8 uimsbf
if (quarterpel) dcecs_quarterpel 8 uimsbf

}
}

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

46

}

6.2.5.2 Video Plane with Short Header

video_plane_with_short_header() { No. of bits Mnemonic

short_video_start_marker 22 bslbf

temporal_reference 8 uimsbf

marker_bit 1 bslbf

zero_bit 1 bslbf

split_screen_indicator 1 bslbf

document_camera_indicator 1 bslbf

full_picture_freeze_release 1 bslbf

source_format 3 bslbf

picture_coding_type 1 bslbf

four_reserved_zero_bits 4 bslbf

vop_quant 5 uimsbf

zero_bit 1 bslbf

do{
pei 1 bslbf
if (pei == “1 ”)

psupp 8 bslbf
} while (pei == “1”)

gob_number = 0
for(i=0; i<num_gobs_in_vop; i++)

gob_layer()
if(next_bits() == short_video_end_marker)

short_video _end_marker 22 uimsbf
while(!bytealigned())

zero_bit 1 bslbf
}

gob_layer() { No. of bits Mnemonic

gob_header_empty = 1
if(gob_number != 0) {

if (next_bits() == gob_resync_marker) {
gob_header_empty = 0

gob_resync_marker 17 bslbf

gob_number 5 uimsbf

gob_frame_id 2 bslbf

quant_scale 5 uimsbf
}

}
for(i=0; i<num_macroblocks_in_gob; i++)

macroblock()
if(next_bits() != gob_resync_marker &&
 nextbits_bytealigned() == gob_resync_marker)

while(!bytealigned())

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

47

zero_bit 1 bslbf

gob_number++
}

video_packet_header() { No. of bits Mnemonic

next_resync_marker()

resync_marker 17-23 uimsbf
if (video_object_layer_shape != “rectangular”) {

header_extension_code 1 bslbf
if (header_extension_code

&& !(sprite_enable = “static“ && vop_coding_type == “I”)) {

vop_width 13 uimsbf

marker_bit 1 bslbf

vop_height 13 uimsbf

marker_bit 1 bslbf

vop_horizontal_mc_spatial_ref 13 simsbf

marker_bit 1 bslbf

vop_vertical_mc_spatial_ref 13 simsbf

marker_bit 1 bslbf
}

}
macroblock_number 1-14 vlclbf
if (video_object_layer_shape != “binary only”)

quant_scale 5 uimsbf
if (video_object_layer_shape == “ rectangular”)

header_extension_code 1 bslbf
if (header_e xtension_code) {

do {

modulo_time_base 1 bslbf
} while (modulo_time_base != ‘0’)

marker_bit 1 bslbf

vop_time_increment 1-16 bslbf

marker_bit 1 bslbf

vop_coding_type 2 uimsbf
if (video_object_layer_shape != “rectangular”) {

change_conv_ratio_disable 1 bslbf
if (vop_coding_type != “ I”)

vop_shape_coding_type 1 bslbf
}
if (video_object_layer_shape != “binary only”) {

intra_dc_vlc_thr 3 uimsbf

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

48

if (sprite_enable == “GMC” && vop_coding_type == “S”
&& no_of_sprite_warping_points > 0)
sprite_trajectory()

if ((reduced_resolution_vop_enable)
&& (video_object_layer_shape == “rectangular”)
&& ((vop_coding_type == “P”) || (vop_coding_type == “I ”)))

vop_reduced_resolution 1 bslbf
if (vop_coding_type != “I”)

vop_fcode_forward 3 uimsbf
if (vop_coding_type == “B”)

vop_fcode_backward 3 uimsbf
}

}
if (newpred_enable) {

vop_id 4-15 uimsbf

vop_id_for_prediction_indication 1 bslbf
if (vop_id_for_prediction_indication)

vop_id_for_prediction 4-15 uimsbf

marker_bit 1 bslbf
}

}

6.2.5.3 Motion Shape Texture

motion_shape_texture() { No. of bits Mnemonic

if (data_partitioned)

 data_partitioned_motion _shape_texture()
else

combined_motion_shape_texture()
}

combined_motion_shape_texture() { No. of bits Mnemonic

do{
macroblock()

} while (nextbits_bytealigned() != resync_marker && nextbits_bytealigned()
!= ‘000 0000 0000 0000 0000 0000’)

}

data_ partitioned_motion_shape_texture() { No. of bits Mnemonic

if (vop_coding_type == “I”) {
data_partitioned_i_vop()

} else if (vop_coding_type == “P” || (vop_coding_type == “S”
&& sprite_enable == “GMC”)) {

data_partitioned_p_vop()
} else if (vop_coding_type == “B”) {

combined_motion_shape_texture()

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

49

}

NOTE: Data partitioning is not supported in B-VOPs.

data_partitioned_i_vop() { No. of bits Mnemonic

do{
if (video_object_layer_shape != “rectangular”){

bab_type 1-3 vlclbf
if (bab_type >= 4) {

if (!change_conv_rate_disable)

conv_ratio 1-2 vlclbf

scan_type 1 bslbf
binary_arithmetic_code()

}
}
if (!transparent_mb()) {

i f (video_object_layer_shape != “rectangle”) {
do {

mcbpc 1-9 vlclbf
} while (derived_mb_type == “ stuffing”)

} else {

mcbpc 1-9 vlclbf
i f (derived_mb_type == “ stuffing”)

continue
}
if (mb_type == 4)

dquant 2 bslbf
if (use_intra_dc_vlc) {

for (j = 0; j < 4; j++) {
if (!transparent_block(j)) {

dct_dc_size_luminance 2-11 vlclbf
if (dct_dc_size_luminance > 0)

dct_dc_differential 1-12 vlclbf
if (dct_dc_size_luminance > 8)

marker_bit 1 bslbf
}

}

for (j = 0; j < 2; j++) {
dct_dc_size_chrominance 2-12 vlclbf
if (dct_dc_size_chrominance > 0)

dct_dc_differential 1-12 vlclbf
if (dct_dc_size_chrominance > 8)

marker_bit 1 bslbf
}

}
}

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

50

} while (next_bits() != dc_marker)
dc_marker /* 110 1011 0000 0000 0001 */ 19 bslbf
for (i = 0; i < mb_in_video_packet; i++) {

if (!transparent_mb()) {

ac_pred_flag 1 bslbf

cbpy 1-6 vlclbf
}

}
for (i = 0; i < mb_in_video_packet; i++) {

if (!transparent_mb()) {
for (j = 0; j < block_count; j++)

block(j)
}

}
}
NOTE 1: The value of mb_in_video_packet is the number of macroblocks in a video packet. The count of stuffing

macroblocks is not included in this value.

NOTE 2: The value of block_count is 6 in the 4:2:0 format.

NOTE 3: The value of alpha_block_count is 4.

data_partitioned_p_vop() { No. of bits Mnemonic

do{
if (video_object_layer_shape != “rectangular”){

bab_type 1-7 vlclbf
if ((bab_type == 1) || (bab_type == 6)) {

mvds_x 1-18 vlclbf

mvds_y 1-18 vlclbf
}

if (bab_type >= 4) {
if (!change_conv_rate_disable)

conv_ratio 1-2 vlclbf

scan_type 1 bslbf
binary_arithmetic_code()

}
}
if (!transparent_mb()) {

i f (video_object_layer_shape != “rectangle”) {
do {

not_coded 1 bslbf
if (!not_coded)

mcbpc 1-9 vlclbf
} while (!(not_coded || derived_mb_type != “ stuffing”))

} else {

not_coded 1 bslbf
if (!not_coded) {

mcbpc 1-9 vlclbf
i f (derived_mb_type == “ stuffing”)

continue

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

51

}
}
if (!not_coded) {

if (sprite_enable == “GMC” && vop_coding_type == “S” &&
derived_mb_type < 2)

mcsel 1 bslbf
if ((!(sprite_enable == “GMC” && vop_coding_type == “S”

&& mcsel) && derived_mb_type < 2)
|| derived_mb_type == 2)
motion_coding(“forward” , derived_mb_type)

}
}

} while (next_bits() != motion_marker)
motion_marker /* 1 1111 0000 0000 0001 */ 17 bslbf
for (i = 0; i < mb_in_video_packet; i++) {

if (!transparent_mb()) {
if (!not_coded){

if (derived_mb_type >= 3)

ac_pred_flag 1 bslbf

cbpy 1-6 vlclbf
if (derived_mb_type == 1 || derived_mb_type == 4)

dquant 2 bslbf
if (derived_mb_type >= 3 && use_intra_dc_vlc) {

for (j = 0; j < 4; j++) {
if (!transparent_block(j)) {

dct_dc_size_luminance 2-11 vlclbf
if (dct_dc_size_luminance > 0)

dct_dc_differential 1-12 vlclbf
if (dct_dc_size_luminance > 8)

marker_bit 1 bslbf
}

}
for (j = 0; j < 2; j++) {

dct_dc_size_chrominance 2-12 vlclbf
if (dct_dc_size_chrominance > 0)

dct_dc_differential 1-12 vlclbf
if (dct_dc_size_chrominance > 8)

marker_bit 1 bslbf
}

}
}

}
}
for (i = 0; i < mb_in_video_packet; i++) {

if (!transparent_mb()) {
if (! not_coded) {

for (j = 0; j < block_count; j++)

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

52

block(j)
}

}
}

}
NOTE 1: The value of mb_in_video_packet is the number of macroblocks in a video packet. The count of stuffing

macroblocks is not included in this value.

NOTE 2: The value of block_count is 6 in the 4:2:0 format.

NOTE 3: The value of alpha_block_count is 4.

motion_coding(mode, type_of_mb) { No. of bits Mnemonic

motion_vector(mode)
if (type_of_mb == 2) {

for (i = 0; i < 3; i++)
motion_vector(mode)

}
}

6.2.5.4 Sprite coding

decode_sprite_piece() { No. of bits Mnemonic

piece_quant 5 bslbf

piece_width 9 bslbf

piece_height 9 bslbf

marker_bit 1 bslbf

piece_xoffset 9 bslbf

piece_yoffset 9 bslbf
sprite_shape_texture()

}

sprite_shape_texture() { No. of bits Mnemonic

if (sprite_transmit_mode == “piece”) {
for (i=0; i < piece_height; i++) {

for (j=0; j < piece_width; j++) {
if (!send_mb()) {

macroblock()
}

}
}

}
if (sprite_transmit_mode == “update”) {

for (i=0; i < piece_height; i++) {
for (j=0; j < piece_width; j++) {

macroblock()
}

}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

53

}
}

sprite_trajectory() { No. of bits Mnemonic

for (i=0; i < no_of_sprite_warping_points; i++) {
warping_mv_code(du[i])
warping_mv_code(dv[i])

}
}

warping_mv_code(d) { No. of bits Mnemonic

dmv_length 2-12 uimsbf
if (dmv_length != ‘00’)

dmv_code 1-14 uimsbf

marker_bit 1 bslbf
}

brightness_change_factor() { No. of bits Mnemonic

brightness_change_factor_size 1-4 uimsbf

brightness_change_factor_code 5-10 uimsbf
}

6.2.6 Macroblock

macroblock() { No. of bits Mnemonic

if (vop_coding_type != “ B”) {
if (video_object_layer_shape != “rectangular”

&& !(sprite_enable == “static” && low_latency_sprite_enable
&& sprite_transmit_mode == “ update”))
mb_binary_shape_coding()

if (video_object_layer_shape != “binary only”) {
if (!transparent_mb()) {

if (video_object_layer_shape != “rectangular”
&& !(sprite_enable = "static" && low_latency_sprite_enable
&& sprite_transmit_mode == “ update”)) {
do{

if (vop_coding_type != “ I” && !(sprite_enable == "static"
&& sprite_transmit_mode == “piece”))

not_coded 1 bslbf

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

54

if (!not_coded || vop_coding_type == “I”
|| (vop_coding_type == "S"
&& low_latency_sprite_enable
&& sprite_transmit_mode == "piece"))

mcbpc 1-9 vlclbf
} while(!(not_coded || derived_mb_type != “ stuffing”))

} else {
if (vop_coding_type != “I” && !(sprite_enable = "static"

&& sprite_transmit_mode == “ piece”))

not_coded 1 bslbf
if (!not_coded || vop_coding_type == “I”

|| (vop_coding_type == "S"
&& low_latency_sprite_enable
&& sprite_transmit_mode == "piece"))
mcbpc 1-9 vlclbf

}
if (!not_coded || vop_coding_type == “I”

|| (vop_coding_type == "S" && low_latency_sprite_enable
&& sprite_transmit_mode == "piece")) {
if (vop_coding_type == “S” && sprite_enable == “GMC”

 && (derived_mb_type == 0 || derived_mb_type == 1))

mcsel 1 bslbf
if (!short_video_header &&

(derived_mb_type == 3 ||
derived_mb_type == 4))

ac_pred_flag 1 bslbf
if (derived_mb_type != “ stuffing”)

cbpy 1-6 vlclbf
else

return()
if (derived_mb_type == 1 ||

derived_mb_type == 4)
dquant 2 bslbf

if (interlaced)
interlaced_information()

if (!(ref_select_code==‘ 11’ && scalability)
&& sprite_enable != “static”) {
if ((derived_mb_type == 0 || derived_mb_type == 1)

&& (vop_coding_type == “P”
|| (vop_coding_type == “S” && !mcsel))) {

motion_vector(“forward”)
if (interlaced && field_prediction)

motion_vector(“forward”)
}
if (derived_mb_type == 2) {

for (j=0; j < 4; j++)
if (!transparent_block(j))

motion_vector(“forward”)
}

}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

55

for (i = 0; i < block_count; i++)
if(!transparent_block(i))

block(i)
}

}
}

}
else {

if (video_object_layer_shape != “rectangular”)
mb_binary_shape_coding()

if ((co_located_not_coded != 1 || (scalability && (ref_select_code != '11'
|| enhancement_type == 1)) || (sprite_enable == “GMC”
&& backward_reference_vop_coding_type == “S”))
&& video_object_layer_shape != “binary only”) {
if (!transparent_mb()) {

modb 1-2 vlclbf
if (modb != ‘1 ’) {

mb_type 1-4 vlclbf
if (modb == ‘00’)

cbpb 3-6 vlclbf
if (ref_select_code != ‘00’ || !scalability) {

if (mb_type != “1” && cbpb!=0)

dbquant 1-2 vlclbf
if (interlaced)

interlaced_information()

if (mb_type == ‘01’ ||
mb_type == ‘ 0001’) {
motion_vector(“ forward”)
if (interlaced && field_prediction)

motion_vector(“ forward”)
}
if (mb _type == ‘01’ || mb_type == ‘ 001’) {

motion_vector(“ backward”)
if (interlaced && field_prediction)

motion_vector(“ backward”)
}
if (mb_type == “1 ”)

motion_vector(“ direct”)
}
if (ref_select_code == ‘00’ && scalability &&

cbpb !=0) {
dbquant 1-2 vlclbf
if (mb_type == ‘01’ || mb_type == ‘1’)

motion_vector(“ forward”)
}
for (i = 0; i < block_count; i++)

if(!transparent_block(i))

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

56

block(i)
}

}
}

}
if(video_object_layer_shape==“grayscale”

&& !transparent_mb()) {
for(j=0; j<aux_comp_count; j++) {

if(vop_coding_type==”I” || ((vop_coding_type==” P” ||
(vop_coding_type==”S” && sprite_enable==”GMC”))
&& !not_coded &&
(derived_mb_type==3 || derived_mb_type==4))) {

coda_i 1 bslbf
if(coda_i==”coded”) {

ac_pred_flag_alpha 1 bslbf

cbpa 1-6 vlclbf
for(i=0;i<alpha_block_count;i++)

if(!transparent_block())
alpha_block(i)

}
} else { /* P, S(GMC) or B macroblock */

if(vop_coding_type == ”P” || (sprite_enable == “ GMC” &&
(vop_coding_type==“ S”
|| backward_reference_vop_coding_type==“S”))
|| co_located_not_coded != 1) {

coda_pb 1-2 vlclbf
if(coda_pb==” coded”) {

cbpa 1-6 vlclbf
for(i=0;i<alpha_block_count;i++)

if(!transparent_block())
alpha_block(i)

}
}

}
}

}

NOTE: The value of block_count is 6 in the 4:2:0 format. The value of alpha_block_count is 4.
backward_reference_vop_coding_type means the vop_coding_type of the backward reference VOP as described
in subclause 7.6.7.

6.2.6.1 MB Binary Shape Coding

mb_binary_shape_coding() { No. of bits Mnemonic

if(!(scalability && hierarchy_type == ‘0’
&& (enhancement_type == ‘0 ’ || use_ref_shape == ‘0 ’))
&& !(scalability && video_object_layer_shape == “ binary only”)) {

bab_type 1-7 vlclbf

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

57

if (vop_coding_type == ‘P’ || vop_coding_type == ‘B’
|| (vop_coding_type == ‘S’ && sprite_enable == “GMC”)) {
if ((bab_type==1) || (bab_type == 6)) {

mvds_x 1-18 vlclbf

mvds_y 1-18 vlclbf
}

}
if (bab_type >=4) {

if (!change_conv_ratio_disable)

conv_ratio 1-2 vlcbf

scan_type 1 bslbf

binary_arithmetic_code()
}

} else {
i f (!use_ref_shape || video_object_layer_shape == “binary only”) {

enh_bab_type 1-3 vlclbf
if (enh_bab_type == 3)

scan_type 1 bslbf
if (enh_bab_type == 1 || enh_bab_type == 3)

enh_binary_arithmetic_code()
}

}
}

backward_shape () { No. of bits Mnemonic

for(i=0; i<backward_shape_height/16; i++)
for(j=0; j<backward_shape_width/16; j++) {

bab_type 1-3 vlclbf
if (bab_type >=4) {

if (!change_conv_ratio_disable)

conv_ratio 1-2 vlcbf

scan_type 1 bslbf
binary_arithmetic_code()
}

}
}

forward_shape () { No. of bits Mnemonic

for(i=0; i<forward_shape_height /16; i++)
for(j=0; j<forward_shape_width/16; j++) {

bab_type 1-3 vlclbf
if (bab_type >=4) {

if (!change_conv_ratio_disable)

conv_ratio 1-2 vlcbf

scan_type 1 bslbf

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

58

binary_arithmetic_code()
}

}
}

6.2.6.2 Motion vector

motion_vector (mode) { No. of bits Mnemonic

if (mode == „direct“) {

horizontal_mv_data 1-13 vlclbf

vertical_mv_data 1-13 vlclbf
}
else if (mode == „forward“) {

horizontal_mv_data 1-13 vlclbf
if ((vop_fcode_forward != 1) && (horizontal_mv_data != 0))

horizontal_mv_residual 1-6 uimsbf

vertical_mv_data 1-13 vlclbf

if ((vop_fcode_forward != 1)&& (vertical_mv_data != 0))
vertical_mv_residual 1-6 uimsbf

}
else if (mode == „backward“) {

horizontal_mv_data 1-13 vlclbf
if ((vop_fcode_backward != 1) && (horizontal_mv_data != 0))

horizontal_mv_residual 1-6 uimsbf

vertical_mv_data 1-13 vlclbf
if ((vop_fcode_backward != 1) && (vertical_mv_data != 0))

vertical_mv_residual 1-6 uimsbf
}

}

6.2.6.3 Interlaced Information

interlaced_information() { No. of bits Mnemonic

if ((derived_mb_type == 3) || (derived_mb_type == 4) ||
(cbp != 0))

dct_type 1 bslbf
if (((vop_coding_type == “P”) &&

((derived_mb_type == 0) || (derived_mb_type == 1))) ||
((sprite_enable == “ GMC”) && (vop_coding_type == “S”) &&
(derived_mb_type < 2) && (!mcsel)) ||
((vop_coding_type == “B”) && (mb_type != “1”))) {

field_prediction 1 bslbf
if (field_prediction) {

if (vop_coding_type == “P” ||
(vop_coding_type == “B” &&
mb_type != “001”)) {
forward_top_field_reference 1 bslbf

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

59

forward_bottom_field_reference 1 bslbf
}
if ((vop_coding_type == “B”) &&

(mb_type != “0001”)) {

backward_top_field_reference 1 bslbf

backward_bottom_field_reference 1 bslbf
}

}
}

}

6.2.7 Block

The detailed syntax for the term “DCT coefficient” is fully described in clause 7.

block(i) { No. of bits Mnemonic

last = 0
if(!data_partitioned &&

(derived_mb_type == 3 || derived_mb_type == 4)) {

if(short_video_header == 1)

intra_dc_coefficient 8 uimsbf
else if (use_intra_dc_vlc == 1) {

if (i<4) {

dct_dc_size_luminance 2-11 vlclbf
if(dct_dc_size_luminance != 0)

dct_dc_differential 1-12 vlclbf
if (dct_dc_size_luminance > 8)

marker_bit 1 bslbf
} else {

dct_dc_size_chrominance 2-12 vlclbf
if(dct_dc_size_chrominance !=0)

dct_dc_differential 1-12 vlclbf
if (dct_dc_size_chrominance > 8)

marker_bit 1 bslbf
}

}
}
if (pattern_code[i])

while (! last)

DCT coefficient 3-24 vlclbf
}
NOTE : “last” is defined to be the LAST flag resulting from reading the most recent DCT coefficient.

6.2.7.1 Alpha Block

The syntax for DCT coefficient decoding is the same as for block(i) in subclause 6.2.8.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

60

alpha_block(i) { No. of bits Mnemonic

last = 0
if(!data_partitioned &&

(vop_coding_type == “I” || (vop_coding_type == “P” | |
(vop_coding_type == “S” && sprite_enable == “GMC”))
&& !not_coded &&
(derived_mb_type == 3 || derived_mb_type == 4)))) {

dct_dc_size_alpha 2-11 vlclbf
if(dct_dc_size_alpha != 0)

dct_dc_differential 1-12 vlclbf
if (dct_dc_size_alpha > 8)

marker_bit 1 bslbf
}
if (pattern_code[i])

while (! last)
DCT coefficient 3-24 vlclbf

}

NOTE: “last” is defined to be the LAST flag resulting from reading the most recent DCT coefficient.

6.2.8 Still Texture Object

StillTextureObject() { No. of bits Mnemonic

still_texture_object_start_code 32

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

61

if (visual_object_verid != 0001) {

tiling_ disable 1 bslbf

texture_error_resilience_disable 1 bslbf

texture_object_id 16 uimsbf

marker_bit 1 bslbf

wavelet_filter_type 1 uimsbf

wavelet_download 1 uimsbf

wavelet_decomposition_levels 4 uimsbf

scan_direction 1 bslbf

start_code_enable 1 bslbf

texture_object_layer_shape 2 uimsbf

quantisation_type 2 uimsbf
if (quantisation_type == 2) {

spatial_scalability_levels 4 uimsbf
if (spatial_scalability_levels != wavelet_decomposition_levels) {

use_default_spatial_scalability 1 uimsbf

if (use_default_spatial_layer_size == 0)
for (i=0; i<spatial_scalability_levels – 1; i++)

wavelet_layer_index 4 uimsbf
}

}
if (wavelet_download == “1”){

uniform_wavelet_filter 1 uimsbf
if (uniform_wavelet_filter == “1”)

download_wavelet_filters()
else

for (i=0; i<wavelet_decomposition_levels; i++)
download_wavelet_filters()

}

wavelet_stuffing 3 uimsbf
if(!texture_error_resilience_disable) {

target_segment_length 16 uimsbf

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

62

marker_bit 1 bslbf
}
if(texture_object_layer_shape == “ 00”) {

texture_object_layer_width 15 uimsbf

marker_bit 1 bslbf

texture_object_layer_height 15 uimsbf

marker_bit 1 bslbf
}
else if (texture_object_layer_shape == “01”) {

horizontal_ref 15 uimsbf

marker_bit 1 bslbf

vertical_ref 15 uimsbf

marker_bit 1 bslbf

object_width 15 uimsbf

marker_bit 1 bslbf

object_height 15 uimsbf

marker_bit 1 bslbf
/* if tiling_disable == “1 ” and texture_object_layer_shape == “01” configuration
information precedes this point; elementary stream data follows. See annex K */

if(tiling_disable == “1”)
shape_object_decoding()

}
if (tiling_disable == “0 ”){

tile_width 15 uimsbf

marker_bi t 1 bslbf

tile_height 15 uimsbf

marker_bit 1 bslbf

number_of_tiles 16 uimsbf
marker_bit 1 bslbf
tiling_jump_table_enable 1 bslbf
if (tiling jump_table_enable == “1”) {

for (i=0; i<number_of_tiles; i++) {

tile_size_high 16 uimsbf

market_bit 1 bslbf

tile_size_low 16 uimsbf

market_bit 1 bslbf
}

}
next_start_code()

}
/* if tiling_ disable == “0” or texture_object_layer_shape == “00” configuration
information precedes this point; elementary stream data follows. See annex K */

do {
if(tiling_disable == “0”) {

texture_tile_start_code 32 bslbf

tile_id 16 uimsbf

if (texture_object_layer_shape == “01”) {
marker_bit 1 bslbf
texture_tile_type 2 uimsbf

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

63

marker_bit 1 bslbf
}

}
if (!texture_error_resilience_disable) {

if (texture_object_layer_shape== “ 01” &&
tiling_disable==“ 0”) {

if (texture_tile_type==“boundary tile”)
shape_object_decoding()

}
while (nextbit_bytealigned () == texture_marker) {

TexturePacketHeader ()
do {

while (texture_unit_not_completed) {
DecodeStu()
if (segment_length>= target_segment_length)

decode_segment_marker()
}

} while (nextbit_bytealigned () != texture_ma rker)
}

}
else {

if (texture_object_layer_shape== “ 01” && tiling_disable==“0”) {
if (texture_tile_type==“boundary tile”)

shape_object_decoding()
}

for (color = “y”, “u ”, “v”) {
wavelet_dc_decode()

}
i f (quantisation_type == 1) {

TextureLayerSQ ()
}
else if (quantisation_type== 2) {

if (start_code_enable == 1) {
do {

TextureSpatialLayerMQ()
} while (next_bits() ==

texture_spatial_layer_start_code)
} else {

for (i =0; i<spatial_scalability_levels; i++)
TextureSpatialLayerMQNSC()

}
}
else if (quantisation_type == 3) {

for (color = “y”, “u ”, “v”)

do {
quant_byte 8 uimsbf

} while (quant_byte >> 7)

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

64

max_bitplanes 5 uimsbf
if (scan_direction == 0) {

do {
TextureSNRLayerBQ ()

} while (next_bits() == texture_snr_layer_start_code)
} else {

do {
TextureSpatialLayerBQ ()

} while (next_bits() ==
texture_spatial_layer_start_code)

}
}

} /* error_resi_disable */
If (tiling_disable == “0 ”)

next_start_code()
} while (nextbits_bytealigned () == texture_tile_start_code)

}
else { /* version 1 */

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

65

texture_object_id 16 uimsbf

marker_bit 1 bslbf

wavelet_filter_type 1 uimsbf

wavelet_download 1 uimsbf

wavelet_decomposition_levels 4 uimsbf

scan_direction 1 bslbf

start_code_enable 1 bslbf

texture_object_layer_shape 2 uimsbf

quantization_type 2 uimsbf
if (quantization_type == 2) {

spatial_scalability_levels 4 uimsbf
if (spatial_scalability_levels != wavelet_decomposition_levels) {

use_default_spatial_scalability 1 uimsbf
if (use_default_spatial_layer_size == 0)

for (i=0; i<spatial_scalability_levels – 1; i++)

wavelet_layer_index 4

}
}
if (wavelet_download == “1”){

uniform_wavelet_filter 1 uimsbf
if (uniform_wavelet_filter == “1”)

download_wavelet_filters()
else

for (i=0; i<wavelet_decomposition_levels; i++)
download_wavelet_filters()

}

wavelet_stuffing 3 uimsbf
if(texture_object_layer_shape == “ 00”){

texture_object_layer_width 15 uimsbf

marker_bit 1 bslbf

texture_object_layer_height 15 uimsbf

marker_bit 1 bslbf
}
else {

horizontal_ref 15 imsbf

marker_bit 1 bslbf

vertical_ref 15 imsbf

marker_bit 1 bslbf

object_width 15 uimsbf

marker_bit 1 bslbf

object_height 15 uimsbf
marker_bit 1 bslbf
shape_object_decoding ()

}
/* configuration information precedes this point; elementary stream data follows.
See annex K */

for (color = “y”, “u ”, “v”)

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

66

wavelet_dc_decode()
if(quantization_type == 1)

TextureLayerSQ()
else if (quantization_type == 2) {

if (start_code_enable == 1) {
do {

TextureSpatialLayerMQ()
} while (next_bits() == texture_spatial_layer_start_code)

} else {
for (i =0; i<spatial_scalabi lity_levels; i++)

TextureSpatialLayerMQNSC()
}

}
else if (quantization_type == 3) {

for (color = “y”, “u ”, “v”)
do{

quant_byte
} while(quant_byte >>7)

max_bitplanes
if (scan_direction == 0) {

do {
TextureSNRLayerBQ()

} while (next_bits() == texture_snr_layer_start_code)

} else {
do {

TextureSpatialLayerBQ()
} while (next_bits() == texture_spatial_layer_start_code)

}
}

}
}
NOTE 1 : The value of texture_unit_not_completed is '0' if the decoding of one sub-unit in a texture unit is completed.

Otherwise the value is '1'.
NOTE 2 : The value of first_packet_decoded is set to ‘0’ if the first packet has not been decoded. The value of

first_packet_decoded is set to ‘1’ after the first packet has been decoded.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

67

TexturePacketHeader() { No. of bits Mnemonic

next_texture_marker()

texture_marker 17 bslbf

do {
TU_first 8 uimsbf

} while (TU_first >> 7)
do{

TU_last 8 uimsbf
} while (TU_last >> 7)
header_extention_code 1 bslbf
if (header_extention_code) {

texture_object_id 16 uimsbf

marker_bit 1 bslbf

wavelet_filter_type 1 uimsbf

wavelet_download 1 uimsbf

wavelet_decomposition_levels 4 uimsbf

scan_direction 1 bslbf

start_code_enable 1 bslbf

texture_object_layer_shape 2 uimsbf

quantisation_type 2 uimsbf
if (quantisation_type == 2) {

spatial_scalability_levels 4 uimsbf
if (spatial_scalability_levels != wavelet_decomposition_levels) {

use_default_spatia l_scalability 1 uimsbf
if (use_default_spatial_layer_size == 0)

for (i=0; i<spatial_scalability_levels – 1; i++)

wavelet_layer_index 4 uimsbf

}
}
if (wavelet_download == “1”){

uniform_wavelet_filter 1 uimsbf
if (uniform_wavelet_filter == “1”)
download_wavelet_filters()
else

for (I=0; i<wavelet_decomposition_levels; i++)
download_wavelet_filters()

}

wavelet_stuffing 3 uimsbf
if(texture_object_layer_shape == “00”) {

texture_object_layer_width 15 uimsbf

marker_bit 1 bslbf

texture_object_layer_height 15 uimsbf

marker_bit 1 bslbf
}
else {

if (!first_packet_decoded) {

horizontal_ref 15 uimsbf

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

68

marker_bit 1 bslbf
vertical_ref 15 uimsbf
marker_bit 1 bslbf
object_width 15 uimsbf

marker_bit 1 bslbf

object_height 15 uimsbf

marker_bit 1 bslbf
}

}
if (tiling_disable == “0 ”){

tile_width 15 uimsbf

marker_bit 1 bslbf

tile_height 15 uimsbf

marker_bit 1 bslbf
}

target_segment_length 16 uimsbf
}

}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

69

DecodeStu() { No. of bits Mnemonic

for (color = “ y”, “u”, “v”)
wavelet_dc_decode ()

if(quantisation_type == 1) {
TextureLayerSQ()

}
else if (quantisation_type == 2) {

if (start_code_enable == 1) {
do {

TextureSpatialLayerMQ()
} while (next_bits() == texture_spati al_layer_start_code)

} else {
for (i =0; i<spatial_scalability_levels; i++)

TextureSpatialLayerMQNSC()
}

}
else if (quantisation_type == 3) {

for (color = “ y”, “u”, “v”)
do{

quant_byte 8 uimsbf
} while(quant_byte >>7)

max_bitplanes 5 uimsbf
if (scan_direction == 0) {

do {
TextureSNRLayerBQ()

} while (next_bits() == texture_snr_layer_start_code)
} else {

do {
TextureSpatialLayerBQ()

} while (next_bits() == texture_spatial_layer_start_code)
}

}
}

6.2.8.1 TextureLayerSQ

TextureLayerSQ() { No. of bits Mnemonic

if (scan_direction == 0) {
for (“y”, “u ”, “ v”) {

do {

quant_byte 8 uimsbf
} while (quant_byte >> 7)
for (i=0; i<wavelet_decomposition_levels; i++)

if (i!=0 || color!= “u“,“ v“) {
max_bitplane [i] 5 uimsbf

if ((i+1)%4==0)

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

70

marker_bit 1 bslbf
}

}
for (i = 0; i<tree_blocks; i++)

for (color = “ y” , “ u” , “ v”)
arith_decode_highbands_td()

} else {
if (start_code_enable) {

do {
TextureSpatialLayerSQ()

} while (next_bits() == texture_spatial_layer_start_code)
} else {

for (i = 0; i< wavelet_decomposition_levels; i++)
TextureSpatialLayerSQNSC()

}
}

}
NOTE: The value of tree_block is that wavelet coefficients are organized in a tree structure which is rooted in the low-low
band (DC band) of the wavelet decomposition, then extends into the higher frequency bands at the same spatial location.
Note the DC band is encoded separately.

6.2.8.2 TextureSpatialLayerSQ

TextureSpatialLayerSQ() { No. of bits Mnemonic

texture_spatial_layer_start_code 32 bslbf

texture_spatial_layer_id 5 uimsbf
TextureSpatialLayerSQNSC()

}

6.2.8.3 TextureSpatialLayerSQNSC

TextureSpatialLayerSQNSC() { No. of bits Mnemonic

for (color=“y“,“ u“ ,“ v“) {
if ((first_wavelet_layer && color==“ y“) ||

(second_wavelet_layer && color==“u“, “v“))
do {

quant_byte 8 uimsbf

} while (quant_byte >> 7)
if (color ==“y“)

max_bitplanes 5 uimbsf
else if (!first_wavelet_layer)

max_bitplanes 5 uimbsf
}
for (color="y","u","v")

if (color="y" || !first_wavelet_layer)
arith_decode_highbands_bb()

}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

71

NOTE:The value of first_wavelet_layer becomes “true” when the variable ‘i ’ of subclause 6.2.8.1 TextureLayerSQ() equals
to zero. Otherwise, it is “ false” .The value of second_wavelet_layer becomes “ true” when the variable ‘i’ of sublause 6.2.8.1
TextureLayerSQ() equals to one. Otherwise, it is “ false” .

6.2.8.4 Te xtureSpatialLayerMQ

TextureSpatialLayerMQ() { No. of bits Mnemonic

texture_spatial_layer_start_code 32 bslbf

texture_spatial_layer_id 5 uimsbf

snr_scalability_levels 5 uimsbf
do {

TextureSNRLayerMQ()
} while (next_bits() == texture_snr_layer_start_code)

}

6.2.8.5 TextureSpatialLayerMQNSC

TextureSpatialLayerMQNSC() { No. of bits Mnemonic

snr_scalability_levels 5 uimsbf
for (i =0; i<snr_scalability_levels; i++)

TextureSNRLayerMQNSC ()
}

6.2.8.6 TextureSNRLayerMQ

TextureSNRLayerMQ(){

texture_snr_layer_start_code 32 bslbf

texture_snr_layer_id 5 uimsbf
TextureSNRLayerMQNSC()

}

6.2.8.7 TextureSNRLayerMQNSC

TextureSNRLayerMQNSC(){ No. of bits Mnemonic

if (spatial_scalability_levels == wavelet_decomposition_levels
&& spatial_layer_id == 0) {
for (color = “ y“) {

do {

quant_byte 8 uimsbf
} while (quant_byte >> 7)

for (i=0; i<spatial_layers; i++) {
max_bitplane [i] 5 uimsbf
if ((i+1)%4 == 0)

marker_bit 1 bslbf

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

72

}
}

}
else {

for (color=“y”, “u”, “v”) {
do {

quant_byte 8 uimsbf
} while (quant_byte >> 7)
for (i=0; i<spatial_layers; i++) {

max_bitplane [i] 5 uimsbf
if ((i+1)%4 == 0)

marker_bit 1 bslbf
}

}
}
if (scan_direction == 0) {

for (i = 0; i<tree_blocks; i++)
for (color = “ y” , “ u” , “ v”)

if (wavelet_decomposition_layer_id != 0 || color != “u ”, “v”)
arith_decode_highbands_td()

} else {
for (i = 0; i< spatial_layers; i++) {

for (color = “ y” , “ u” , “ v”) {

if (wavelet_decomposition_layer_id != 0 || color != “u ”, “v”)
arith_decode_highbands_bb()

}
}

}
}
NOTE: The value of spatial_layers is equivalent to the maximum number of the wavelet decomposition layers in that
scalability layer.

6.2.8.8 TextureSpatialLayerBQ

TextureSpatialLayerBQ() { No. of bits Mnemonic

texture_spatial_layer_start_code 32 bslbf
texture_spatial_layer_id 5 uimsbf
for (i=0; i<max_bitplanes; i++) {

texture_snr_layer_start_code 32 bslbf

texture_snr_layer_id 5 uimsbf
TextureBitPl aneBQ()
next_start_code()

}
}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

73

6.2.8.9 TextureBitPlaneBQ

TextureBitPlaneBQ () { No. of bits Mnemonic

for (color = “ y”, “u”, “v”)
if (wavelet_decomposition_layer_id == 0){

all_nonzero[color] 1 bslbf
if (all_nonzero[color] == 0) {

all_zero[color] 1 bslbf
if (all_zero[color]==0) {

lh_zero[color] 1 bslbf

hl_zero[color] 1 bslbf

hh_zero[color] 1 bslbf
}

}
}
if (wavelet_decomposition_layer_id != 0 ||color != “u”, “v”){

if(all_nonzero[color]==1 || all_zero[color]==0){
if (scan_direction == 0)

arith_decode_highbands_bilevel_bb()
else

arith_decode_highbands_bilevel_td()

}
}

}
}

6.2.8.10 TextureSNRLayerBQ

TextureSNRLayerBQ() { No. of bits Mnemonic

texture_snr_layer_start_code 32 bslbf

texture_snr_layer_id 5 uimsbf
for (i=0; i<wavelet_decomposition_levels; i++) {

texture_spatial_layer_start_code 32 bslbf

texture_spatial_layer_id 5 uimsbf

TextureBitPlaneBQ()
next_start_code ()

}
}

6.2.8.11 DownloadWaveletFilters

download_wavelet_filters() { No. of bits Mnemonic

lowpass_filter_length 4 uimsbf

highpass_filter_length 4 uimsbf
do{

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

74

if (wavelet_filter_type == 0) {
filter_tap_integer 16 imsbf
marker_bit 1 bslbf

} else {

filter_tap_float_high 16 uimsbf

marker_bit 1 bslbf

filter_tap_float_low 16 uimsbf

marker_bit 1 bslbf
}

} while (lowpass_filter_length--)
do{

if (wavelet_filter_type == 0){

filter_tap_integer 16 imsbf

marker_bit 1 bslbf
} else {

filter_tap_float_high 16 uimsbf

marker_bit 1 bslbf

filter_tap_float_low 16 uimsbf

marker_bit 1 bslbf
}

} while (highpass_filter_length--)
if (wavelet_filter_type == 0) {

integer_scale 16 uimsbf

marker_bit 1 bslbf
}

}

6.2.8.12 Wavelet dc decode

wavelet_dc_decode() { No. of bits Mnemonic

mean 8 uimsbf
do{

quant_dc_byte 8 uimsbf
} while(quant_dc_byte >>7)
do{

band_offset_byte 8 uimsbf
} while (band_offset_byte >>7)
do{

band_max_byte 8 uimsbf
} while (band_max_byte >>7)
arith_decode_dc()

}

6.2.8.13 Wavelet higher bands decode

wavelet_ higher_bands_decode() { No. of bits Mnemonic

do{

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

75

root_max_alphabet_byte 8 uimsbf
} while (root_max_alphabet_byte >>7)
marker_bit 1 bslbf
do{

valz_max_alphabet_byte 8 uimsbf
} while (valz_max_alphabet_byte >>7)
do{

valnz_max_alphabet_byte 8 uimsbf
} while (valnz_max_alphabet_byte >>7)
arith_decode_highbands()

}

6.2.8.14 Shape Object Decoding

shape_object_decoding() { No. of bits Mnemonic

change_conv_ratio_disable 1 bslbf

sto_constant_alpha 1 bslbf
if (sto_constant_alpha)

sto_constant_alpha_value 8 bslbf
if (visual_object_verid != 0001) {

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

76

marker_bit 1 bslbf
for(i=0; i<shape_base_layer_height_blocks(); i++) {

for(j=0; j<shape_base_layer_width_blocks(); j++) {
bab_type 1-2 vlclbf
if (bab_type == 4) {

if (!change_conv_ratio_disable)

conv_ratio 1-2 vlclbf

scan_type 1 bslbf
binary_arithmetic_decode()

}
}

}

marker_bit 1 bslbf
if (!start_code_enable) {

sto_shape_coded_layers 4 uimsbf

marker_bit 1 bslbf
for(k = 0; k < sto_shape_coded_layers; k++) {

for(i=0;i<shape_enhanced_layer_height_blocks(); i++)
for(j=0; j<shape_enhanced_layer_width_blocks(); j++)

enh_binary_arithmetic_decode()

marker_bit 1 bslbf
}

}

else {
next_start_code()
while (nextbits() == texture_shape_layer_ start_code) {

texture_shape_layer_start_code 32 bslbf
texture_shape_layer_id 5 uimsbf

marker_bit 1 bslbf
for(i=0;i<shape_enhanced_layer_height_blocks(); i++)

for(j=0; j<shape_enhanced_layer_width_blocks(); j++)
enh_binary_arithmetic_decode()

marker_bit 1 bslbf
next_start_code()

}

texture_spatial_layer_start_code 32 bslbf

texture_spatial_layer_id 5 uimsbf

marker_bit 1 bslbf
}

} else { /* version 1 */

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

77

for (i=0 ; i<((object_width+15)/16)*(object_height+15)/16) ; i ++) {

bab_type 1-2 vlclbf
if (bab_type==4) {

if (!change_conv_ratio_disable)

conv_ratio 1-2 vlclbf

scan_type 1 bslbf
binary_arithmetic_decode()

}
}

}

6.2.9 Mesh Object

MeshObject() { No. of bits Mnemonic

mesh_object_start_code 32 bslbf

do{
MeshObjectPlane()

} while (next_bits_bytealigned() ==
mesh_object_plane_start_code ||
next_bits_bytealigned() != ‘0000 0000 0000 0000 0000 0001’)

}

6.2.9.1 Mesh Object Plane

MeshObjectPlane() { No. of bits Mnemonic

MeshObjectPlaneHeader()
MeshObjectPlaneData()

}

MeshObjectPlaneHeader() { No. of bits Mnemonic

if (next_bits_bytealigned()==‘0000 0000 0000 0000 0000 0001’){
next_start_code()

mesh_object_plane_start_code 32 bslbf

}
is_intra 1 bslbf
mesh_mask 1 bslbf
temporal_header()

}

MeshObjectPlaneData() { No. of bits Mnemonic

if (mesh_mask == 1) {
if (is_intra == 1)

mesh_geometry()

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

78

else
mesh_motion()

}
}

6.2.9.2 Mesh geometry

mesh_geometry() { No. of bits Mnemonic

mesh_type _code 2 bslbf
if (mesh_type_code == ‘01’) {

nr_of_mesh_nodes_hor 10 uimsbf

nr_of_mesh_nodes_vert 10 uimsbf

marker_bit 1 uimsbf

mesh_rect_size_hor 8 uimsbf

mesh_rect_size_vert 8 uimsbf

triangle_split_code 2 bslbf
}

else if (mesh_type_code == ‘10’) {
nr_of_mesh_nodes 16 uimsbf
marker_bit 1 uimsbf
nr_of_boundary_nodes 10 uimsbf
marker_bit 1 uimsbf

node0_x 13 simsbf

marker_bit 1 uimsbf

node0_y 13 simsbf

marker_bit 1 uimsbf
for (n=1; n < nr_of_mesh_nodes; n++) {

delta_x_len_vlc 2-12 vlclbf
if (delta_x_len_vlc)

delta_x 1-14 vlclbf

delta_y_len_vlc 2-12 vlclbf
if (delta_y_len_vlc)

delta_y 1-14 vlclbf
}

}
}

6.2.9.3 Mesh motion

mesh_motion() { No. of bits Mnemonic

motion_range_code 3 bslbf
for (n=0; n <nr_of_mesh_nodes; n++) {

node_motion_vector_flag 1 bslbf
if (node_motion_vector_flag == ‘0’) {

delta_mv_x_vlc 1-13 vlclbf
if ((motion_range_code != 1) && (delta_mv_x_vlc != 0))

delta_mv_x_res 1-6 uimsbf

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

79

delta_mv_y_vlc 1-13 vlclbf
if ((motion_range_code != 1) && (delta_mv_y_vlc != 0))

delta_mv_y_res 1-6 uimsbf
}

}
}

6.2.10 FBA Object

fba_object() { No. of bits Mnemonic

fba _object_start_code 32 bslbf
do {

fba_object_plane()
} while (!(
(nextbits_bytealigned() == ‘000 0000 0000 0000 0000 0000’) &&
(nextbits_bytealigned() != fba_object_plane_start_code)))

}

6.2.10.1 FBA Object Plane

fba_object_plane() { No. of bits Mnemonic

fba_object_plane_header()
fba_object_plane_data()

}

fba_object_plane_header() { No. of bits Mnemonic

is_intra 1 bslbf

fba_object_mask 2 bslbf
temporal_header()

}

fba_object_plane_data() { No. of bits Mnemonic

if(fba_object_mask &’01’) {
if(is_intra) {

fap_quant 5 uimsbf
for (group_number = 1; group_number <= 10; group_number++) {

marker_bit 1 uimsbf

fap_mask_type 2 bslbf
if(fap_mask_type == ‘01’|| fap_mask_type == ‘10’)

fap_group_mask[group_number] 2 -16 vlcbf
}

fba_suggested_gender 1 bslbf

fba_object_coding_type 1 bslbf

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

80

if(fba_object_coding_type == 0) {
is_i_new_max 1 bslbf
is_i_new_min 1 bslbf
is_p_new_max 1 bslbf

is_p_new_min 1 bslbf
decode_new_minmax()
decode_ifap()
}

if(fba_object_coding_type == 1)
decode_i_segment()

}
else {

if(fba_object_coding_type == 0)
decode_pfap()

if(fba_object_coding_type == 1)
decode_p_segment()

}
}

}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

81

if(fba_object_mask &’10’) {
if(is_intra) {

bap_pred_quant_index 5 uimsbf
for (group_number = 1; group_number <=

BAP_NUM_GROUPS; group_number++) {

marker_bit 1 uimsbf

bap_mask_type 2 bslbf
if(bap_mask_type == ‘01’)

bap_group_mask [group_number] 3 -22 vlcbf
else if (bap_mask_type == ‘00’) {

for(i=0; i <BAPS_IN_GROUP[group_number];i++) {

bap_group_mask[group_mask][i] = 0
}

}
else if (bap_mask_type == ‘ 11’) {

for(i=0; i <BAPS_IN_GROUP[group_number];i++) {

bap_group_mask[group_mask][i] = 1
}

}
}

fba_suggested_gender 1 bslbf

fba_object_coding_type 1 bslbf
i f (fba_object_coding_type == 0) {

bap_is_i_new_max 1 bslbf

bap_is_i_new_min 1 bslbf

bap_is_p_new_max 1 bslbf

bap_is_p_new_min 1 bslbf
decode_bap_new_minmax()
decode_bap_ibap()

}
if(fba_object_coding_type == 1)

decode_bap_i_segment()
}
else {

i f (fba_object_coding_type == 0)

decode_bap_pbap()
if(fba_object_coding_type == 1)

decode_bap_p_segment()
}

}

temporal_header() { No. of bits Mnemonic

if (is_intra) {

is_frame_rate 1 bslbf

if(is_frame_rate)
decode_frame_rate()

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

82

is_time_code 1 bslbf
if (is_time_code)

time_code 18 bsIbf
}

skip_frames 1 bslbf
if(skip_frames)

decode_skip_frames()
}

6.2.10.2 Decode frame rate and skip frames

decode_frame_rate(){ No. of bits Mnemonic

frame_rate 8 uimsbf

seconds 4 uimsbf

frequency_offset 1 uimsbf
}

decode_skip_frames(){ No. of bits Mnemonic

do{

number_of_frames_to_skip 4 uimsbf
 } while (number_of_frames_to_skip = “ 1111”)

}

6.2.10.3 Decode new minmax

decode_new_minmax() { No. of bits Mnemonic

if (is_i_new_max) {
for (group_number = 2, j=0, group_number <= 10, group_number++)

for (i=0; i < NFAP[group_number]; i++, j++) {
if (!(i & 0x3))

marker_bit 1 uimsbf
if (fap_group_mask[group_number] & (1 <<i))

i_new_max[j] 5 uimsbf
}

if (is_i_new_min) {
for (group_number = 2, j=0, group_number <= 10, group_number++)

for (i=0; i < NFAP[group_number]; i++, j++) {
if (!(i & 0x3))

marker_bit 1 uimsbf
if (fap_group_mask[group_number] & (1 <<i))

i_new_min[j] 5 uimsbf
}

if (is_p_new_max) {
for (group_number = 2, j=0, group_number <= 10, group_number++)

for (i=0; i < NFAP[group_number]; i++, j++) {
if (!(i & 0x3))

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

83

marker_bit 1 uimsbf
if (fap_group_mask[group_number] & (1 <<i))

p_new_max[j] 5 uimsbf
}

if (is_p_new_min) {
for (group_number = 2, j=0, group_number <= 10, group_number++)

for (i=0; i < NFAP[group_number]; i++, j++) {
if (!(i & 0x3))

marker_bit 1 uimsbf
if (fap_group_mask[group_number] & (1 <<i))

p_new_min[j] 5 uimsbf
}

}
}

6.2.10.4 Decode ifap

decode_ifap(){ No. of bits Mnemonic

for (group_number = 1, j=0; group_number <= 10; group_number++) {
if (group_number == 1) {

if(fap_group_mask[1] & 0x1)
decode_viseme()

if(fap_group_mask[1] & 0x2)
decode_expression()

} else {
for (i= 0; i<NFAP[group_number]; i++, j++) {

if(fap_group_mask[group_number] & (1 < < i)) {
aa_decode(ifap_Q[j],ifap_cum_freq[j])

}
}

}
}

}

6.2.10.5 Decode pfap

decode_pfap(){ No. of bits Mnemonic

for (group_number = 1, j=0; group_number <= 10; group_number++) {
if (group_number == 1) {

if(fap_group_mask[1] & 0x1)
decode_viseme()

if(fap_group_mask[1] & 0x2)
decode_expression()

} else {
for (i= 0; i<NFAP[group_number]; i++, j++) {

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

84

if(fap_group_mask[group_number] & (1 << i)) {
aa_decode(pfap_diff[j], pfap_cum_freq[j])

}
}

}
}

}

6.2.10.6 Decode viseme and expression

decode_viseme() { No. of bits Mnemonic

aa_decode(viseme_select1Q, viseme_select1_cum_freq) vlclbf
aa_decode(viseme_select2Q, viseme_select2_cum_freq) vlclbf
aa_decode(viseme_blendQ, viseme_blend_cum_freq) vlclbf

viseme_def 1 bslbf
}

decode_expression() { No. of bits Mnemonic

aa_decode(expression_select1Q, expression_select1_cum_freq) vlclbf
aa_decode(expression_intensity1Q,

expression_intensity1_cum_freq)
vlclbf

aa_decode(expression_select2Q, expression_select2_cum_freq) vlclbf
aa_decode(expression_intensity2Q,

expression_intensity2_cum_freq)
vlclbf

aa_decode(expression_blendQ, expression_blend_cum_freq) vlclbf

init_face 1 bslbf

expression_def 1 bslbf
}

6.2.10.7 Decode i_segment

decode_i_segment(){ No. of bits Mnemonic

for (group_number= 1, j=0; group_number<= 10; group_number++) {
if (group_number == 1) {

if(fap_group_mask[1] & 0x1)
decode_i_viseme_segment()

if(fap_group_mask[1] & 0x2)
decode_i_expression_segment()

} else {
 for(i=0; i<NFAP[group_number]; i++, j++) {

if(fap_group_mask[group_number] & (1 << i)) {
decode_i_dc(dc_Q[j])
decode_ac(ac_Q[j])

}
}

}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

85

}
}

6.2.10.8 Decode p_segment

decode_p_segment(){ No. of bits Mnemonic

for (group_number = 1, j =0; group_number <= 10; group_number++) {
if (group_number == 1) {

if(fap_group_mask[1] & 0x1)
decode_p_viseme_segment()

if(fap_group_mask[1] & 0x2)
decode_p_expression_segment()

} else {
for (i=0; i<NFAP[group_number]; i++, j++) {

If(fap_group_mask[group_number] & (1 << i)) {
decode_p_dc(dc_Q[j])
decode_ac(ac_Q[j])

}
}

}
}

}

6.2.10.9 Decode viseme and expression

decode_i_viseme_segment(){ No. of bits Mnemonic

viseme_segment_select1q[0] 4 uimsbf

viseme_segment_select2q[0] 4 uimsbf

viseme_segment_blendq[0] 6 uimsbf
viseme_segment_def[0] 1 bslbf
for (k=1; k<16, k++) {

viseme_segment_select1q_diff[k] vlclbf
viseme_segment_select2q_diff[k] vlclbf

viseme_segment_blendq_diff[k] vlclbf

viseme_segment_def[k] 1 bslbf
 }

}

decode_p _viseme_segment(){ No. of bits Mnemonic

for (k=0; k<16, k++) {

viseme_segment_select1q_diff[k] vlclbf

viseme_segment_select2q_diff[k] vlclbf

viseme_segment_blendq_diff[k] vlclbf

viseme_segment_def[k] 1 bslbf

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

86

 }
}

decode_i_expression_segment(){ No. of bits Mnemonic

expression_segment_select1q[0] 4 uimsbf
expression_segment_select2q[0] 4 uimsbf
expression_segment_intensity1q[0] 6 uimsbf
expression_segment_intensity2q[0] 6 uimsbf

expression_segment_init_face[0] 1 bslbf

expression_segment_def[0] 1 bslbf
for (k=1; k<16, k++) {

expression_segment_select1q_diff[k] vlclbf

expression_segment_select2q_diff[k] vlclbf

expression_segment_intensity1q_diff[k] vlclbf

expression_segment_ intensity2q_diff[k] vlclbf

expression_segment_init_face[k] 1 bslbf

expression_segment_def[k] 1 bslbf
 }

}

decode_p _expression_segment(){ No. of bits Mnemonic

for (k=0; k<16, k++) {

expression_segment_select1q_diff[k] vlclbf

expression_segment_select2q_diff[k] vlclbf

expression_segment_intensity1q_diff[k] vlclbf

expression_segment_intensity2q_diff[k] vlclbf

expression_segment_init_face[k] 1 bslbf

expression_segment_def[k] 1 bslbf
 }

}

decode_i_dc(dc_q) { No. of bits Mnemonic

dc_q 16 simsbf
if(dc_q == -256*128)

dc_q 31 simsbf
}

decode_p_dc(dc_q_diff) { No. of bits Mnemonic

dc_q_diff vlclbf
dc_q_diff = dc_q_diff - 256
if(dc_q_diff == -256)

dc_q_diff 16 simsbf
if(dc_Q == 0-256*128)

dc_q_diff 32 simsbf

}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

87

decode_ac(ac_Q[i]) { No. of bits Mnemonic

this = 0
next = 0
while(next < 15) {

count_of_runs vlclbf
if (count_of_runs == 15)

next = 16
else {

next = this+1+count_of_runs
for (n=this+1; n<next; n++)

ac_q[i][n] = 0

ac_q[i][next] vlclbf
if(ac_q[i][next] == 256)

decode_i_dc(ac_q[i][next])
else

ac_q[i][next] = ac_q[i][next]-256
this = next

}
}

}

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

88

6.2.10.10 Decode bap min max

decode_bap_new_minmax() { No. of bits Mnemonic

if (bap_is_i_new_max) {
for (group_number=1;group_number<= BAP_NUM_GROUPS;
group_number++)

for (i=0; i < NBAP_GROUP[group_number]; i++) {
j=BAPS_IN_GROUP[group_number][i]
if (!(i & 0x3))

marker_bit 1 uimsbf
if (bap_group_mask[group_number] & (1 <<i))

bap_i_new_max[j] 5 uimsbf
}

if (bap_is_i_new_min) {
for (group_number = 1; group_number <= BAP_NUM_GROUPS;
group_number++)

for (i=0; i < NBAP_GROUP[group_number]; i++) {
j=BAPS_IN_GROUP[group_number][i]
if (!(i & 0x3))

marker_bit 1 uimsbf
if (bap_group_mask[group_number] & (1 <<i))

bap_i_new_min[j] 5 uimsbf
}

if (bap_is_p_new_max) {
for (group_number = 1; group_number <= BAP_NUM_GROUPS;
group_number++)

for (i=0; i < NBAP_GROUP[group_number]; i++) {
j=BAPS_IN_GROUP[group_number][i]
if (!(i & 0x3))

marker_bit 1 uimsbf
if (bap_group_mask[group_number] & (1 <<i))

bap_p_new_max[j] 5 uimsbf

}
if (bap_is_p_new_min) {

for (group_number = 1; group_number <= BAP_NUM_GROUPS;
group_number++)

for (i=0; i < NBAP_GROUP[group_number]; i++) {
j=BAPS_IN_GROUP[group_number][i]
if (!(i & 0x3))

marker_bit 1 uimsbf
if (bap_group_mask[group_number] & (1 <<i))

bap_p_new_min[j] 5 uimsbf
}

}
}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

89

6.2.10.11 Decode ibap

decode_ibap(){ No. of bits Mnemonic

for (group_number = 1; group_number <= BAP_NUM_GROUPS;
group_number++) {
for (i= 0; i<NBAP_GROUP[group_number]; i++) {

j=BAPS_IN_GROUP[group_number][i]
if(bap_group_mask[group_number] & (1 << i)) {

aa_decode(ibap_Q[j],ibap_cum_freq[j])
}

}
}

}

6.2.10.12 Decode pbap

decode_pbap() { No. of bits Mnemonic

for (group_number = 1; group_number <= BAP_NUM_GROUPS;
group_number++) {

for (i= 0; i<NBAP_GROUP[group_number]; i++) {
j=BAPS_IN_GROUP[group_number][i]
if(bap_group_mask[group_number] & (1 << i)) {

aa_decode(pbap_diff[j], pbap_cum_freq[j])
}

}
}

}

6.2.10.13 Decode bap i segment

decode_bap_i_segment(){ No. of bits Mnemonic

for (group_number= 1; group_number<= BAP_NUM_GROUPS;
group_number++) {
 for(i=0; i<NBAP_GROUP[group_number]; i++) {

if(bap_group_mask[group_number] & (1 << i)) {
j=BAPS_IN_GROUP[group_number][i]
decode_i_dc(dc_Q[j])

decode_ac(ac_Q[j])
}

}
}

}

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

90

6.2.10.14 Decode bap p segment

decode_bap_p_segment(){ No. of bits Mnemonic

for (group_number = 1; group_number <= BAP_NUM_GROUPS;
group_number++) {
for (i=0; i<NBAP_GROUP[group_number]; i++) {

If(bap_group_mask[group_number] & (1 << i)) {
j = BAPS_IN_GROUP[group_number][i]
decode_p_dc(dc_Q[j])
decode_ac(ac_Q[j])

}
}

}
}

6.2.11 3D Mesh Object

6.2.11.1 3D_Mesh_Object

3D_Mesh_Object () { No. of bits Mnemonic

3D_MO_start_code 16 uimsbf

3D_Mesh_Object_Header()
do {

3D_Mesh_Object_Layer()
} while (nextbits_bytealigned() == 3D_MOL_start_code)

}

6.2.11.2 3D_Mesh_Object_Header

3D_Mesh_Object_Header() { No. of bits Mnemonic

ccw 1 bslbf
convex 1 bslbf
solid 1 bslbf

creaseAngle 6 uimsb
f

coord_header()

normal_header()

color_header()

texCoord_header()

ce_SNHC 1 bslbf
if (ce_SNHC == ‘1’)

ce_SNHC _header()
}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

91

6.2.11.3 3D_Mesh_Object_Layer

3D_Mesh_Object_Layer () { No. of bits Mnemonic

3D_MOL_start_code 16 uimsbf

mol_id 8 uimsbf
if (ce_SNHC == ‘1’) {

ce_SNHC _n_vertices 24 uimsbf

ce_SNHC _n_ triangles 24 uimsbf

ce_SNHC _n_edges 24 uimsbf
}
if (mol_id == 0)

3DMeshObject_Base_Layer()
else

3DMeshObject_Refinement_Layer()
}

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

92

6.2.11.4 3D_Mesh_Object_Base_Layer

3DmeshObject_Base_Layer() No. of bits Mnemonic

do {

3D_MOBL_start_code 16 uimsbf

mobl_id 8 uimsbf
while (!bytealigned())

one_bit 1 bslbf
qf_start()
if (3D_MOBL_start_code == “partition_type_0”) {

do {
connected_component()
qf_decode(last_component, last_component_context) vlclbf

} while (last_component == ‘0 ’)
}
else if (3D_MOBL_start_code == “partition_type_1”) {

vg_number=0
do {

vertex_graph()
vg_number++
qf_decode(has_stitches, has_stitches_context) vlclbf

if (has_stitches == ‘1’)

stitches()

qf_decode(codap_last_vg, codap_last_vg_context) vlclbf
} while (codap_last_vg == ‘0 ’)

}
else if (3D_MOBL_start_code == “partition_type_2”) {

if(vg_number > 1)
qf_decode(codap_vg_id) vlclbf

qf_de code(codap_left_bloop_idx) vlclbf
qf_decode(codap_right_bloop_idx) vlclbf
qf_decode(codap_bdry_pred) vlclbf
triangle_tree()
triangle_data()

}

} while (nextbits_bytealigned() == 3D_MOBL_start_code)
}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

93

6.2.11.5 coord_header

coord_h eader() { No. of bits Mnemonic

coord_binding 2 uimsbf

coord_bbox 1 bslbf
if (coord_bbox == ‘1’) {

coord_xmin 32 bslbf

coord_ymin 32 bslbf

coord_zmin 32 bslbf

coord_size 32 bslbf
}

coord_quant 5 uimsbf

coord_pred_type 2 uimsbf
if (coord_pred_type==”tree_prediction” ||

coord_pred_type=='”parallelogram_prediction”) {

coord_nlambda 2 uimsbf

for (i=1; i<coord_nlambda ; i++)
coord_lambda 4-27 simsbf

}
}

6.2.11.6 normal_header

normal_header() { No. of bits Mnemonic

normal_binding 2 uimsbf
if (normal_binding != “ not_bound”) {

normal_bbox 1 bslbf

normal_quant 5 uimsbf

normal_pred_type 2 uimsbf

if (normal_pred_type ==” tree_prediction”||
normal_pred_type ==”parallelogram_prediction”) {

normal_nlambda 2 uimsbf
for (i=1; i<normal_nlambda; i++)

normal_lambda 3-17 simsbf
}

}
}

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

94

6.2.11.7 color_header

color_header() { No. of bits Mnemonic

color_binding 2 uimsbf
if (color_binding != “not_bound”) {

color_bbox 1 bslbf
if (color_bbox == ‘1 ’) {

color_rmin 32 bslbf

color_gmin 32 bslbf

color_bmin 32 bslbf

color_size 32 bslbf
}

color_quant 5 uimsbf

color_pred_type 2 uimsbf
if (color_pred_type==”tree_prediction” ||

color_pred_type=='”parallelogram_prediction”) {

color_nlambda 2 uimsbf
for (i=1; i<color_nlambda ; i++)

color_lambda 4-19 simsbf
}

}
}

6.2.11.8 texCoord_header

texCoord_header() { No. of bits Mnemonic

texCoord_binding 2 uimsbf
if (texCoord_binding != “not_bound”) {

texCoord_bbox 1 bslbf
if (texCoord_bbox == ‘1’) {

texCoord_umin 32 bslbf

texCoord_vmin 32 bslbf

texCoord_size 32 bslbf
}

texCoord_quant 5 uimsbf

texCoord_pred_type 2 uimsbf

if (texCoord_pred_type==”tree_prediction” ||
texCoord_pred_type==”parallelogram_prediction”) {

texCoord_nlambda 2 uimsbf
for (i=1; i<texCoord_nlambda ; i++)

texCoord_lambda 4-19 simsbf
}

}
}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

95

6.2.11.9 ce_SNHC _header

ce_SNHC_header() { No. of bits Mnemonic

ce_SNHC_n_proj_surface_spheres 4 uimsbf
if (ce_SNHC_n_proj_surface_spheres != 0) {

ce_SNHC_x_coord_center_point 32 bslbf

ce_SNHC_y_coord_center_point 32 bslbf

ce_SNHC_z_coord_center_point 32 bslbf

ce_SNHC_normalized_screen_distance_factor 8 uimsbf
for (i=0; i< ce_ SNHC_n_proj_surface_spheres; i++) {

ce_SNHC_radius 32 bslbf

ce_SNHC_min_proj_purface 32 bslbf

ce_SNHC_n_proj_points 8 uimsbf
for (j=0; j< ce_SNHC _n_proj_points ; j++) {

ce_SNHC_sphere_point_coord 11 uimsbf

ce_SNHC_proj_surface 32 bslbf
}

}
}

}

6.2.11.10 connected_component

connected_component() { No. of bits Mnemonic

vertex_graph()
qf_decode(has_stitches, has_stitches_context) vlclbf
if (has_stitches == ‘1 ’)

stitches()
triangle_tree()
triangle_da ta()

}

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

96

6.2.11.11 vertex_graph

vertex_graph() { No. of bits Mnemonic

qf_decode(vg_simple, vg_simple_context) vlclbf
depth = 0
code_last = ‘1’
openloops = 0
do {

do {
if (code_last == ‘1 ’) {

qf_decode(vg_last, vg_last_context) vlclbf
if (openloops > 0) {

qf_decode(vg_forward_run, vg_forward_run_context) vlclbf
if (vg_forward_run == ‘0 ’) {

openloops--
if (openloops > 0)

qf_decode(vg_loop_index,
vg_loop_index_context)

vlclbf

break
}

}
}
qf_decode(vg_run_length , vg_run_length_context) vlclbf
qf_decode(vg_leaf, vg_leaf_context) vlclbf
if (vg_leaf == ‘1’ && vg_simple == ‘0 ’) {

qf_decode(vg_loop, vg_loop_context) vlclbf
if (vg_loop == ‘1’)

openloops++
}

} while (0)
if (vg_leaf == ‘1’ && vg_last == ‘1 ’ && code_last == ‘1’)

depth --
if (vg_leaf == ‘0’ && (vg_last == ‘0 ’ || code_last == ‘0’))

depth++
code_last = vg_leaf

} wh ile (depth >= 0)
}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

97

6.2.11.12 stitches

stitches() { No. of bits Mnemonic

for each vertex in connected_component {
qf_decode(stitch_cmd, stitch_cmd_context) vlclbf
if (stitch_cmd) {

qf_decode(stitch_pop_or_get,
stitch_pop_or_get_context)

vlclbf

if (stitch_pop_or_get == ‘1’) {
qf_decode(stitch_pop , stitch_pop_context) vlclbf
qf_decode(stitch_stack_index , stitch_stack_index_context) vlclbf
qf_decode(stitch_incr_length,

stitch_incr_length_context)
vlclbf

if (stitch_incr_length != 0)
qf_decode(stitch_incr_length_sign ,

stitch_incr_length_sign_context)
vlclbf

qf_decode(stitch_push, stitch_push_context) vlclbf
if (total length >0)

qf_decode(stitch_reverse, stitch_reverse_context) vlclbf
}
else

qf_decode(stitch_length , stitch_length_context) vlclbf
}

}
}

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

98

6.2.11.13 triangle_tree

triangle_tree() { No. of bits Mnemonic

depth = 0
ntriangles = 0
branch_position = -2
do {

qf_decode(tt_run_length, tt_run_leng th_context) vlclbf
ntriangles += tt_run_length
qf_decode(tt_leaf, tt_leaf_context) vlclbf
if (tt_leaf == ‘1 ’) {

depth --
}
else {

branch_position = ntriangles
depth++

}
} while (depth >= 0)
if (3D_MOBL_start_code == “partition_type_2”)

if (codap_right_bloop_idx – codap_left_bloop_idx – 1 > ntriangles) {
if (branch_position == ntriangles – 2) {

qf_decode(codap_branch_len, codap_branch_len_context) vlclbf

ntriangles -= 2

}

else
ntriangles--

}
}

6.2.11.14 triangle_data

triangle_data(i) { No. of bits Mnemonic

qf_decode(triangulated, triangulated_context) vlclbf
depth=0
root_triangle()
for (i=1; i<ntriangles; i++)

triangle(i)
}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

99

6.2.11.15 root_triangle

root_triangle() { No. of bits Mnemonic

if (marching_triangle)
qf_decode(marching_pattern,

marching_pattern_context[marching_pattern])
vlclbf

else {
if (3D_MOBL_start_code == “partition_type_2”)

if (tt_leaf == ‘0’ && depth==0)
qf_decode(td_orientation, td_orientation_context) vlclbf

if (tt_leaf == ‘0’)
depth++

else
depth --

}
if (3D_MOBL_start_code == “partition_type_2”)

if (triangulated == ‘0’)
qf_decode(polygon_edge,

polygon_edge_context[polyg on_edge])
vlclbf

root_coord()
root_normal()
root_color()
root_texCoord()

}

root_coord() { No. of bits Mnemonic

if (3D_MOBL_start_code == “partition_type_2”) {
if (visited[vertex_index] == 0) {

root_coord_sample()

if (v isited[vertex_index] == 0) {

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

100

coord_sample()
coord_sample()

}
}

}
else {

root_coord_sample()
coord_sample()
coord_sample()

}
}

root_normal() { No. of bits Mnemonic

if (normal_binding != “not_bound”)
if (3D_MOBL_start_code == “partition_type_2”) {
if (normal_binding != “bound_per_vertex” || visited[vertex_index]
== 0) {

root_normal_sample()

if (normal_binding != “ bound_per_face” && (normal_binding !=
“bound_per_vertex” || visited[v ertex_index] == 0)) {

normal_sample()
normal_sample()

}
}
else {

root_normal_sample()
if (normal_binding != “bound_per_face”) {

normal_sample()
normal_sample()

}
}

}

root_color() { No. of bits Mnemonic

if (color_binding != “not_bound”)

if (3D_MOBL_start_code == “partition_type_2”) {
if (color_binding != “bound_per_vertex” || visited[vertex_index] ==
0) {

root_color_sample()

if (color_binding != “ bound_per_face” && (color_binding !=
“bound_per_vertex” ||visited[vertex_index] == 0)) {

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

101

color_sample()
color_sample()

}
}
else {

root_color_sample()
if (color_binding != “bound_per_face”) {

color_sample()
color_sample()

}
}

}

root_texCoord() { No. of bits Mnemonic

if (texCoord_binding != “ not_bound”)

if (3D_MOBL_start_code == “partition_type_2”) {
if (texCoord_binding != “bound_per_vertex” || visited[vertex_index]
== 0) {

root_texCoord_sample()

if (texCoord_binding!= “bound_per_vertex” || visited[vertex_index]
== 0) {

texCoord_sample()
texCoord_sample()

}
}
else {

root_texCoord_sample()
texCoord_sample()
texCoord_sample()

}
}

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

102

6.2.11.16 triangle

triangle(i) { No. of bits Mnemonic

if (marching_triangle)
qf_decode(marching_ edge,
marching_ edge_context[marching_edge])

vlclbf

else {
if (3D_MOBL_start_code == “partition_type_2”)

if (tt_leaf == ‘0 ’ && depth==0)
qf_decode(td_orientation, td_orientation_context) vlclbf

if (tt_leaf == ‘0 ’)
depth++

else
depth --

if (triangulated == ‘0’)
qf_decode(polygon_edge,

polygon_edge_context[polygon_edge])
vlclbf

coord()
normal()
color()
texCoord()

}

coord() { No. of bits Mnemonic

if (3D_MOBL_start_code == “partition_type_2”) {
if (visited[vertex_index] == 0)

if (no_ancestors)
root_coord_sample()

else
coord_sample()

}
else {

if (visited[vertex_index] == 0)
coord_sample()

}
}

normal() { No. of bits Mnemonic

if (normal_binding == “bound_per_vertex”) {
if (3D_MOBL_start_code == “partition_type_2”) {

if (visited[vertex_index] == 0)
if (no_ancestors)

root_normal_sample()
else

normal_sample()
}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

103

else {
if (visited[vertex_index] == 0)

normal_sample()
}

} else if (normal_binding == “bound_per_face”) {
if (triangulated == ‘1’ || polygon_edge == ‘1’)

normal_sample()
} else if (normal_binding == “bound_per_corner”) {

if (triangulated == ‘1’ || polygon_edge == ‘1’) {
normal_sample()
normal_sample()

}
normal_sample()

}
}

color() { No. of bits Mnemo nic

if (color_binding == “bound_per_vertex”) {
if (3D_MOBL_start_code == “partition_type_2”) {

if (visited[vertex_index] == 0)
if (no_ancestors)

root_color_sample()
else

color_sample()
}
else {

if (visited[vertex_index] == 0)
color_sample()

}
} else if (color_binding == “bound_per_face”) {

if (triangulated == ‘1’ || polygon_edge == ‘1’)
color_sample()

} else if (color_binding == “bound_per_corner”) {
if (triangulated == ‘1’ || polygon_edge == ‘1’) {

color_sample()
color_sample()

}
color_sample()

}

}

texCoord() { No. of bits Mnemonic

if (texCoord_binding == “bound_per_vertex”) {
if (3D_MOBL_start_code == “partition_type_2”) {

if (visited[vertex_index] == 0)

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

104

if (no_ancestors)
root_texCoord_sample()

else
texCoord_sample()

}
else {

if (visited[vertex_index] == 0)
texCoord_sample()

}
} else if (texCoord_binding == “bound_per_corner”) {

if (triangulated == ‘1’ || polygon_edge == ‘1’) {
texCoord_sample()
texCoord_sample()

}
texCoord_sample()

}
}

root_coord_sample() { No. of bits Mnemonic

for (i=0; i<3; i++)
for (j=0; j<coord_quant ; j++)

qf_decode(coord_bit, zero_context) vlclbf

}

root_normal_sample() { No. of bits Mnemonic

for (i=0; i<1; i++)
for (j=0; j<normal_quant; j++)

qf_decode(normal_bit, zero_context) vlclbf
}

root_color_sample() { No. of bits Mnemonic

for (i=0; i<3; i++)
for (j=0; j<color_quant; j++)

qf_decode(color_bit, zero_context) vlclbf
}

root_texCoord_sample() { No. of bits Mnemonic

for (i=0; i<2; i++)
for (j=0; j<texCoord_quant; j++)

qf_decode(texCoord_bit, zero_context) vlclbf
}

coord_sample() { No. of bits Mnemonic

for (i=0; i<3; i++) {

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

105

j=0
do {

qf_decode(coord_leading_bit, coord_leading_bit_context[3*j+i]) vlclbf
j++

} while (j<coord_quant && coord_leading_bit == ‘0 ’)
if (coord_leading_bit == ‘1 ’) {

qf_decode(coord_sign_bit, zero_context) vlclbf
do {

qf_decode(coord_trailing_bit, zero_context) vlclbf
} while (j<coord_quant)

}
}

}

normal_sample() { No. of bits Mnemonic

for (i=0; i<1; i++) {
j=0
do {

qf_decode(normal_leading_bit, normal_leading_bit_context[j]) vlclbf
j++

} while (j<normal_quant && normal_leading_bit == ‘0’)
if (normal_leading_bit == ‘ 1’) {

qf_decode(normal_sign_bit, zero_context) vlclbf
do {

qf_decode(normal_trailing_bit, zero_context) vlclbf
} while (j<normal_quant)

}
}

}

color_sample() { No. of bits Mnemonic

for (i=0; i<3; i++) {
j=0
do {

qf_decode(color_leading_bit, color_leading_bit_context[3*j+i]) vlclbf
j++

} while (j<color_quant && color_leading_bit == ‘0’)
if (color_leading_bit == ‘1’) {

qf_decode(color_sign_bit, zero_context) vlclbf
do {

qf_decode(color_trailing_bit, zero_context) vlclbf
} while (j<color_quant)

}
}

}

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

106

texCoord_sample() { No. of bits Mnemonic

for (i=0; i<2; i++) {
j=0
do {

qf_decode(texCoord_leading_bit,
texCoord_leading_bit_context[2*j+i])

vlclbf

j++
} while (j< texCoord_quant && texCoord_leading_bit == ‘0 ’)
if (texCoord_leading_bit == ‘1’) {

qf_decode(texCoord_sign_bit, zero_context) vlclbf
do {

qf_decode(texCoord_trailing_bit, zero_context) vlclbf
} while (j< texCoord_quant)

}
}

}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

107

6.2.11.17 3DMeshObject_Refinement_Layer

3DMeshObject_Refinement_Layer () { No. of bits Mnemonic

do {

3D_MORL_start_code 16 uimsbf

morl_id 8 uimsbf

connectivity_update 2 uimsbf

pre_smoothing 1 bslbf
if(pre_smoothing == ‘1’)

pre_smoothing_parameters()

post_smoothing 1 bslbf
if(post_smoothing == ‘1 ’)

post_smoothing_parameters()
while (!bytealigned())

one_bit 1 bslbf
qf_start()
if(connectivity_update == ”fs_update”)

fs_pre_update()
if(pre_smoothing == ‘1’ || post_smoothing == ‘1’)

smoothing_constraints()
/* apply pre smoothing step */

if(connectivity_update == “fs_update”)
fs_post_update()

if(connectivity_update != ” not_updated”)
qf_decode(other_update , zero_context) vlclbf

if(connectivity_update ==”not_updated” || other_update == ‘1’)
other_property_update()

/* apply post smoothing step */
} while (nextbits_bytealigned() == 3D_MORL_start_code)

}

6.2.11.17.1 pre_smoothing_parameters

pre_smoothing_pa rameters() { No. of bits Mnemonic

pre_smoothing_n 8 uimsbf
pre_smoothing_lambda 32 bslbf
pre_smoothing_mu 32 bslbf
}

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

108

6.2.11.17.2 post_smoothing_parameters

post_smoothing_parameters() { No. of bits Mnemonic

post_smoothing_n 8 uimsbf

post_smoothing_lambda 32 bslbf

post_smoothing_mu 32 bslbf
}

6.2.11.17.3 fs_pre_update

fs_pre_update() { No. of bits Mnemonic

for each connected component {
forest()
for each tree in forest {

triangle_tree()
/* for each tree loop vertex set visited[vertex_index]=’1 ’ */
triangle_data()

}
}

}

forest () { No. of bits Mnemonic

for each edge in connected component
if (creates no loop in forest)

qf_decode(pfs_forest_edge, pfs_forest_edge_context) vlclbf
}

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

109

6.2.11.17.4 smoothing_constraints

smoothing_constraints() { No. of bits Mnemonic

qf_decode(smooth_with_sharp_edges, zero_context) vlclbf
if (smooth_with_sharp_edges == ‘1 ’)

sharp_edge_marks()
qf_decode(smooth_with_fixed_vertices , zero_context) vlclbf
if (smooth_with_fixed_vertices == ‘1’)

fixed_vertex_marks()
}

sharp_edge_marks () { No. of bits Mnemonic

for each edge
qf_decode(smooth_sharp_edge , smooth_sharp_edge_context) vlclbf

}

fixed_vertex_marks () { No. of bits Mnemonic

for each vertex
qf_decode(smooth_fixed_vertex, smooth_fixed_vertex_context) vlclbf

}

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

110

6.2.11.17.5 fs_post_update

fs_post_update() { No. of bits Mnemonic

for each connected component {
for each tree in forest

tree_loop_property_update()
}

tree_loop_property_up date () { No. of bits Mnemonic

loop_coord_update()
loop_normal_update()
loop_color_update()
loop_texCoord_update()

}

loop_coord_update () { No. of bits Mnemonic

for each tree loop vertex
coord_sample()

}

loop_normal_update () { No. of bits Mnemonic

if (normal_binding == “bound_per_vertex”) {
for each tree loop vertex

normal_sample()
}
else if (normal_binding == “bound_per_face”) {

for each tree loop face
normal_sample()

}
else if (normal_binding == “bound_per_corner”) {

for each tree loop corner
normal_sample()

}
}

loop_color_update () { No. of bits Mnemonic

if (color_binding == “ bound_per_vertex”) {
for each tree loop vertex

color_sample()
}
else if (color_binding == “ bound_per_face”) {

for each tree loop face
color_sample()

}
else if (color_binding == “ bound_per_corner”) {

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

111

for each tree loop corner
color_sample()

}
}

loop_texCoord_update () { No. of bits Mnemonic

if (texCoord_binding == “bound_per_vertex”) {
for each tree loop vertex

texCoord_sample()
}
else if (texCoord_binding == “bound_per_corner”) {

for each tree loop corner
texCoord_sample()

}
}

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

112

6.2.11.17.6 other_property_update

other_property_update() { No. of bits Mnemonic

other_coord_update()
other_normal_update()
other_color_update()
other_texCoord_update()

}

other_coord_update () { No. of bits Mnemonic

for each vertex in mesh
if (vertex is not a tree loop vertex)

coord_sample()
}

other_normal_update () { No. of bits Mnemonic

if (normal_binding == “bound_per_vertex”) {
for each vertex in mesh

if (vertex is not a tree loop vertex)
normal_sample()

}

else if (normal_binding == “bound_per_face”) {
for each face in mesh

if (face is not a tree loop face)
normal_sample()

}
else if (normal_binding == “bound_per_corner”) {

for each corner in mesh
if (corner is not a tree loop corner)

normal_sample()
}

}

other_color_update () { No. of bits Mnemonic

if (color_binding == “ bound_per_vertex”) {
for each vertex in mesh

if (vertex is not a tree loop vertex)
color_sample()

}
else if (color_binding == “ bound_per_face”) {

for each face in mesh
if (face is not a tree loop face)

color_sample()
}

else if (color_binding == “ bound_per_corner”) {
for each corner in mesh

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

113

if (corner is not a tree loop corne r)
color_sample()

}
}

other_texCoord_update () { No. of bits Mnemonic

if (texCoord_binding == “bound_per_vertex”) {
for each vertex in tree loop

if (vertex is not a tree loop vertex)
texCoord_sample()

}
else if (texCoord_binding == “bound_per_corner”) {

for each corner in mesh
if (corner is not a tree loop corner)

texCoord_sample()
}

}

6.2.12 Upstream message

6.2.12.1 upstream_message

upstream_message() { No. of bits Mnemonic

upstream_message_type 3 bslbf
If (upstream_message_type == Video_NEWPRED)

upstream_Video_NEWPRED()
if (upstream_message_type == SNHC_QoS)

upstream_SNHC_QoS()

byte_align_for_ upstream()
}

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

114

6.2.12.2 upstream_Video_NEWPRED

upstream_Video_NEWPRED() { No. of bits Mnemonic

newpred_ upstream_ message_type 2 bslbf
if (newpred_upstream_message_type == “ NP_NACK”)

unreliable_flag 1 bslbf

vop_id 4-15 uimsbf

macroblock_number 1-14 uimsbf
if (newpred_upstream_message_type == “ Intra Refresh Command”)

end_macroblock_number 1-14 uimsbf
if (newpred_upstream_message_type == “ NP_NACK”)

requested_vop_id_for_prediction 4-15 uimsbf
}

6.2.12.3 upstream_SNHC_QoS

upstream_SNHC_QoS() { No. of bits Mnemonic

screen_width 12 uimsbf

screen_height 12 uimsbf

n_rendering_modes 4 uimsbf
for (rendering_mode = 0 ; rendering_mode < n_rendering_modes;

rendering_mode++) {
rendering_mode_type 4 uimsbf
n_curves 8 uimsbf
for (i = 0 ; i < n_curves ; i++) {

triangle_parameter 24 uimsbf

n_points_on_curve 8 uimsbf
for (j = 0 ; j < n_points_on_curve ; j++) {

screen_coverage_parameter 8 uimsbf

frame_rate_value 12 bslbf
}

}
}

}

6.3 Visual bitstream semantics

6.3.1 Semantic rules for higher syntactic structures

This subclause details the rules that govern the way in which the higher level syntactic elements may be combined
together to produce a legal bitstream. Subsequent subclauses detail the semantic meaning of all fields in the video
bitstream.

6.3.2 Visual Object Sequence and Visual Object

visual_object_sequence_start_code : The visual_object_sequence_start_code is the bit string ‘000001B0’ in
hexadecimal. It initiates a visual session.

profile_and_level_indication: This is an 8-bit integer used to signal the profile and level identification. The
meaning of the bits is given in Table G-1.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

115

visual_object_sequence_end_code: The visual_object_sequence_end_code is the bit string ‘000001B1’ in
hexadecimal. It terminates a visual session.

visual_object_start_code: The visual_object_start_code is the bit string ‘000001B5’ in hexadecimal. It initiates a
visual object.

is_visual_object_identifier: This is a 1-bit code which when set to ‘1’ indicates that version identification and
priority is specified for the visual object. When set to ‘0 ’, no version identification or priority needs to be specified.

visual_object_verid : This is a 4-bit code which identifies the version number of the visual object. Its meaning is
defined in Table 6-4. When this field does not exist, the value of visual_object_verid is ‘0001 ’.

Table 6-4 -- Meaning of visual_object_verid

visual_object_verid Meaning

0000 reserved
0001 ISO/IEC 14496-2:1999
0010 ISO/IEC 14496-2:1999/Amd. 1
0011 - 1111 reserved

visual_object_priority: This is a 3-bit code which specifies the priority of the visual object. It takes values
between 1 and 7, with 1 representing the highest priority and 7, the lowest priority. The value of zero is reserved.

visual_object_type: The visual_object_type is a 4-bit code given in Table 6-5 which identifies the type of the
visual object.

Table 6-5 -- Meaning of visual object type

code visual object type

0000 reserved
0001 video ID
0010 still texture ID
0011 mesh ID
0100 FBA ID
0101 3D mesh ID
01101 reserved

: :
: :
1111 reserved

video_object_start_code : The video_object_start_code is a string of 32 bits. The first 27 bits are ‘0000 0000
0000 0000 0000 0001 000‘ in binary and the last 5-bits represent one of the values in the range of ‘00000’ to
‘11111’ in binary. The video_object_start_code marks a new video object.

video_object_id: This is given by the last 5 -bits of the video_object_start_code. The video_object_id uniquely
identifies a video object.

video_signal_type : A flag which if set to ‘1 ’ indicates the presence of video_signal_type information.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

116

video_format: This is a three bit integer indicating the representation of the pictures before being coded in
accordance with this part of ISO/IEC 14496. Its meaning is defined in Table 6-6. If the video_signal_type() is not
present in the bitstream then the video format may be assumed to be “Unspecified video format”.

Table 6-6 -- Meaning of video_format

video_format Meaning

000 Component
001 PAL
010 NTSC
011 SECAM
100 MAC
101 Unspecified video format
110 Reserved
111 Reserved

video_range: This one-bit flag indicates the black level and range of the luminance and chrominance signals.

colour_description: A flag which if set to ‘1’ indicates the presence of colour_primaries, transfer_characteristics
and matrix_coefficients in the bitstream.

colour_primaries: This 8-bit integer describes the chromaticity coordinates of the source primaries, and is defined
in Table 6-7.

Table 6-7 -- Colour Primaries

Value Primaries

0 (forbidden)
1 Recommendation ITU-R BT.709

primary x y
green 0,300 0,600
blue 0,150 0,060
red 0,640 0,330
white D65 0,3127 0,3290

2 Unspecified Video
Image characteristics are unknown.

3 Reserved
4 Recommendation ITU-R BT.470-2 System M

primary x y
green 0,210,71
blue 0,140,08
red 0,670,33
white C 0,310 0,316

5 Recommendation ITU-R BT.470-2 System B, G
primary x y
green 0,290,60
blue 0,150,06
red 0,640,33
white D65 0,3127 0,3290

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

117

6 SMPT E 170M
primary x y
green 0,310 0,595
blue 0,155 0,070
red 0,630 0,340
white D65 0,3127 0,3290

7 SMPTE 240M (1987)
primary x y
green 0,310 0,595
blue 0,155 0,070
red 0,630 0,340
white D65 0,3127 0,3290

8 Generic film (colour filters using Illuminant C)
primary x y
green 0,243 0,692 (Wratten 58)
blue 0,145 0,049 (Wratten 47)
red 0,681 0,319 (Wratten 25)

9 -255 Reserved

In the case that video_signal_type() is not present in the bitstream or colour_description is zero the chromaticity is
assumed to be that corresponding to colour_primaries having the value 1.

transfer_characteristics: This 8-bit integer describes the opto-electronic transfer characteristic of the source
picture, and is defined in Table 6-8.

Table 6-8 -- Transfer Characteristics

Value Transfer Characteristic

0 (forbidden)
1 Recommendation ITU-R BT.709

V = 1,099 Lc0,45 - 0,099

for 1≥ Lc ≥ 0,018

V = 4,500 Lc
for 0,018> Lc ≥ 0

2 Unspecified Video
Image characteristics are unknown.

3 reserved
4 Recommendation ITU-R BT.470-2 System M

Assumed display gamma 2,2
5 Recommendation ITU-R BT.470-2 System B, G

Assumed display gamma 2,8
6 SMPTE 170M

V = 1,099 Lc
0,45 - 0,099

for 1≥ Lc ≥ 0,018

V = 4,500 Lc
for 0,018> Lc ≥ 0

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

118

7 SMPTE 240M (1987)

V = 1,1115 Lc0,45 - 0,1115

for Lc≥ 0,0228

V = 4,0 Lc
for 0,0228> Lc

8 Linear transfer characteristics
i.e. V = Lc

9 Logarithmic transfer characteristic (100:1 range)
V = 1.0-Log 10(Lc)/2

for 1= Lc = 0.01

V= 0.0
for 0.01> Lc

10 Logarithmic transfer characteristic (316.22777:1 range)
V = 1.0-Log 10(Lc)/2.5

for 1= Lc = 0.0031622777

V= 0.0
for 0.0031622777> L c

11-255 reserved

In the case that video_signal_type() is not present in the bitstream or colour_description is zero the transfer
characteristics are assumed to be those corresponding to transfer_characteristics having the value 1.

matrix_coefficients: This 8-bit integer describes the matrix coefficients used in deriving luminance and
chrominance signals from the green, blue, and red primaries, and is defined in Table 6 -9.

In this table:

E’Y is analogue with values between 0 and 1

E’PB and E’PR are analogue between the values -0,5 and 0,5

E’R, E’G and E’B are analogue with values between 0 and 1

White is defined as E’y=1, E’PB=0, E’PR=0; E’R =E’G =E’B=1.

Y, Cb and Cr are related to E’Y, E’PB and E’ PR by the following formulae:
if video_range=0:

Y = (219 * 2n-8 * E’Y) + 2n-4.

Cb = (224 * 2n-8 * E’PB) + 2 n-1

Cr = (224 * 2n-8 * E’PR) + 2n-1

if video_range=1:

Y = ((2n -1) * E’Y)

Cb = ((2 n -1) * E’PB) + 2n-1

Cr = ((2n -1) * E’PR) + 2 n-1

for n bit video.

For example, for 8 bit video,

video_range=0 gives a range of Y from 16 to 235, Cb and Cr from 16 to 240;

video_range=1 gives a range of Y from 0 to 255, Cb and Cr from 0 to 255.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

119

Table 6-9 -- Matrix Coefficients

Value Matrix

0 (forbidden)
1 Recommendation ITU-R BT.709

E’Y = 0,7152 E’G + 0,0722 E’B + 0,2126 E’R
E’PB = -0,386 E’G + 0,500 E’B -0,115 E’R
E’PR = -0,454 E’G - 0,046 E’B + 0,500 E’R

2 Unspecified Video
Image characteristics are unknown.

3 reserved
4 FCC

E’Y = 0,59 E’G + 0,11 E’B + 0,30 E’R
E’PB = -0,331 E’G + 0,500 E’B -0,169 E’R
E’PR = -0,421 E’G - 0,079 E’B + 0,500 E’R

5 Recommendation ITU-R BT.470-2 System B, G
E’Y = 0,587 E’G + 0,114 E’B + 0,299 E’R
E’PB = -0,331 E’G + 0,500 E’B -0,169 E’R
E’PR = -0,419 E’G - 0,081 E’B + 0,500 E’R

6 SMPTE 170M
E’Y = 0,587 E’G + 0,114 E’B + 0,299 E’R
E’PB = -0,331 E’G + 0,500 E’B -0,169 E’R
E’PR = -0,419 E’G - 0,081 E’B + 0,500 E’R

7 SMPTE 240M (1987)
E ’Y = 0,701 E’G + 0,087 E’B + 0,212 E’R
E’PB = -0,384 E’G + 0,500 E’B -0,116 E’R
E’PR = -0,445 E’G - 0,055 E’B + 0,500 E’R

8-255 reserved

In the case that video_signal_type() is not present in the bitstream or colour_description is zero the matrix
coefficients are assumed to be those corresponding to matrix_coefficients having the value 1.

In the case that video_signal_type() is not present in the bitstream, video_range is assumed to have the value 0 (a
range of Y from 16 to 235 for 8-bit video).

6.3.2.1 User data

user_data_start_code : The user_data_start_code is the bit string ‘000001B2’ in hexadecimal. It identifies the
beginning of user data. The user data continues until receipt of another start code.

user_data : This is an 8 bit integer, an arbitrary number of which may follow one another. User data is defined by
users for their specific applications. In the series of consecutive user_data bytes there shal l not be a string of 23 or
more consecutive zero bits.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

120

6.3.3 Video Object Layer

video_object_layer_start_code: The video_object_layer_start_code is a string of 32 bits. The first 28 bits are
‘0000 0000 0000 0000 0000 0001 0010‘ in binary and the last 4-bits represent one of the values in the range of
‘0000’ to ‘ 1111’in binary. The video_object_layer_start_code marks a new video object layer.

video_object_layer_id : This is given by the last 4 -bits of the video_object_layer_start_code. The
video_object_layer_id uniquely identifies a video object layer.

short_video_header: The short_video_header is an internal flag which is set to 1 when an abbreviated header
format is used for video content. This indicates video data which begins with a short_video_start_marker rather
than a longer start code such as visual_object_ start_code. The short header format is included herein to provide
forward compatibility with video codecs designed using the earlier video coding specification ITU-T
Recommendation H.263. All decoders which support video objects shall support both header formats
(short_video_header equal to 0 or 1) for the subset of video tools that is expressible in either form.

video_plane_with_short_header(): This is a syntax layer encapsulating a video plane which has only the limited
set of capabilities available using the short header format.

random_accessible_vol: This flag may be set to “1 ” to indicate that every VOP in this VOL is individually
decodable. If all of the VOPs in this VOL are intra -coded VOPs and some more conditions are satisfied then
random_accessible_vol may be set to “1 ”. The flag random_accessible_vol is not used by the decoding process.
random_accessible_vol is intended to aid random access or editing capability. This shall be set to “0” if any of the
VOPs in the VOL are non-intra coded or certain other conditions are not fulfilled.

video_object_type_indication: Constrains the following bitstream to use tools from the indicated object type only,
e.g. Simple Object or Core Object, as shown in Table 6-10.

Table 6-10 -- FLC table for video_object_type indication

Video Object Type Code

Reserved 00000000

Simple Object Type 00000001
Simple Scalable Object Type 00000010
Core Object Type 00000011
Main Object Type 00000100
N-bit Object Type 00000101
Basic Anim. 2D Texture 00000110
Anim. 2D Mesh 00000111
Simple Face 00001000
Still Scalable Texture 00001001
Advanced Real Time Simple 00001010

Core Scalable 00001011
Advanced Coding Efficiency 00001100
Advanced Scalable Texture 00001101
Simple FBA 00001110
Reserved 00001111 - 11111111

is_object_layer_identfier: This is a 1-bit code which when set to ‘1 ’ indicates that version identification and
priority is specified for the visual object layer. When set to ‘0’, no version identification or priority needs to be
specified.

video_object_layer_verid: This is a 4-bit code which identifies the version number of the video object layer. Its
meaning is defi ned in Table 6-11. If both visual_object_verid and video_object_layer_verid exist, the semantics of

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

121

video_object_layer_verid supersedes the other. When this field does not exist, the value of
video_object_layer_verid is substituted by the value of visual_object_verid.

Table 6-11 -- Meaning of video_object_layer_verid

video_object_layer_verid Meaning

0000 Reserved
0001 ISO/IEC 14496-2:1999
0010 ISO/IEC 14496-2:1999/Amd. 1
0011 - 1111 Reserved

video_object_layer_priority: This is a 3-bit code which specifies the priority of the video object layer. It takes
values between 1 and 7, with 1 representing the highest priority and 7, the lowest priority. The value of zero is
reserved.

aspect_ratio_info : This is a four-bit integer which defines the value of pixel aspect ratio. Table 6 -12 shows the
meaning of the code. If aspect_ratio_info indicates extended PAR, pixel_aspect_ratio is represented by par_width
and par_height. The par_width and par_height shall be relatively prime.

Table 6-12 -- Meaning of pixel aspect ratio

aspect_ratio_info pixel aspect ratios

0000 Forbidden

0001 1:1 (Square)
0010 12:11 (625-type for 4:3 picture)
0011 10:11 (525-type for 4:3 picture)

0100 16:11 (625-type stretched for 16:9 picture)
0101 40:33 (525-type stretched for 16:9 picture)

0110-1110 Reserved

1111 extended PAR

par_width : This is an 8-bit unsigned integer which indicates the horizontal size of pixel aspect ratio. A zero value
is forbidden.

par_height : This is an 8-bit unsigned integer which indicates the vertical size of pixel aspect ratio. A zero value is
forbidden.

vol_control_parameters: This a one -bit flag which when set to ‘1’ indicates presence of the following parameters:
chroma_format, low_delay, and vbv_parameters.

chroma_format: This is a two bit integer indicating the chrominance format as defined in the Table 6-13.

Table 6-13 -- Meaning of chroma_format

chroma_format Meaning

00 reserved

01 4:2:0

10 reserved

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

122

11 reserved

low_delay : This is a one-bit flag which when set to ‘1’ indicates the VOL contains no B-VOPs. If this f lag is not
present in the bitstream, the default value is 0 for visual object types that support B-VOP otherwise it is 1.

vbv_parameters : This is a one-bit flag which when set to ‘1’ indicates presence of following VBV parameters:
first_half_bit_rate, latter_half_bit_rate, first_half_vbv_buffer_size, latter_half_vbv_buffer_size,
first_half_vbv_occupancy and latter_half_vbv_occupancy. The VBV constraint is defined in annex D.

first_half_bit_rate, latter_half_bit_rate : The bit rate is a 30-bit unsigned integer which specifies the bitrate of the
bitstream measured in units of 400 bits/second, rounded upwards. The value zero is forbidden. This value is
divided to two parts. The most significant bits are in first_half_bit_rate (15 bits) and the least significant bits are in
latter_half_bit_rate (15 bits). The marker_bit is inserted between the first_half_bit_rate and the latter_half_bit_rate
in order to avoid the resync_marker emulation. The instantaneous video object layer channel bit rate seen by the
encoder is denoted by Rvol (t) in bits per second. If the bit_rate (i.e. first_half_bit_rate and latter_half_bit_rate) field
in the VOL header is present, it defines a peak rate (in units of 400 b its per second; a value of 0 is forbidden) such
that Rvol (t) <= 400 × bit_rate Note that Rvol(t) counts only visual syntax for the current elementary stream (also see
annex D).

first_half_vbv_buffer_size, latter_half_vbv_buffer_size: vbv_buffer_size is an 18 -bit unsigned integer. This
value is divided into two parts. The most significant bits are in first_half_vbv_buffer_size (15 bits) and the least
significant bits are in latter_half_vbv_buffer_size (3 bits), The VBV buffer size is specified in units of 16384 bits. The
value 0 for vbv_buffer_size is forbidden. Define B = 16384 × vbv_buffer_size to be the VBV buffer size in bits.

first_half_vbv_occupancy, latter_half_vbv_occupancy: The vbv_occupancy is a 26-bit unsigned integer. This
value is divided to two parts. The most significant bits are in first_half_vbv_occupancy (11 bits) and the least
significant bits are in latter_half_vbv_occupancy (15 bits). The marker_bit is inserted between the
first_half_vbv_occupancy and the latter_half_vbv_occupancy in order to avoid the resync_marker emulation. The
value of this integer is the VBV occupancy in 64-bit units just before the removal of the first VOP following the VOL
header. The purpose for the quantity is to provide the initial condition for VBV buffer fullness.

video_object_layer_shape : This is a 2-bit integer defined in Table 6-14. It identifies the shape type of a video
object layer.

Table 6-14 -- Video Object Layer shape type

Shape format Meaning

00 rectangular

01 binary
10 binary only
11 grayscale

video_object_layer_shape_extension: This is a 4-bit integer defined in Table V2 - 1. It identifies the number (up
to 3) and type of auxiliary components that can be used, including the grayscale shape (ALPHA) component. Only
a limited number of types and combinations are defined in Table V2 - 1. More applications are possible by selection
of the USER DEFINED type.

Table V2 - 1 -- Semantic meaning of video_object_layer_shape_extension

video_
object_
layer_

shape_
exte nsion

aux_comp_type[0] aux_comp_type[1] aux_comp_type[2] aux_
comp_

count

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

123

0000 ALPHA NO NO 1
0001 DISPARITY NO NO 1
0010 ALPHA DISPARITY NO 2
0011 DISPARITY DISPARITY NO 2
0100 ALPHA DISPARITY DISPARITY 3
0101 DEPTH NO NO 1
0110 ALPHA DEPTH NO 2
0111 TEXTURE NO NO 1
1000 USER DEFINED NO NO 1
1001 USER DEFINED USER DEFINED NO 2
1010 USER DEFINED USER DEFINED USER DEFINED 3

1011 ALPHA USER DEFINED NO 2
1100 ALPHA USER DEFINED USER DEFINED 3

1101-1111 t.b.d. t.b.d. t.b.d. t.b.d.

vop_time_increment_resolution : This is a 16-bit unsigned integer that indicates the number of evenly spaced
subintervals, called ticks, within one modulo time. One modulo time represents the fixed interval of one second.
The value zero is forbidden.

fixed_vop_rate: This is a one-bit flag which indicates that all VOPs are coded with a fixed VOP rate. It shall only
be '1' if and only if all the distances between the display time of any two successive VOPs in the display order in the
video object layer are constant. In this case, the VOP rate can be derived from the fixed_VOP_time_increment. If it
is '0' the display time between any two successive VOPs in the display order can be variable thus indicated by the
time stamps provided in the VOP header.

fixed_vop_time_increment: This value represents the number of ticks between two successive VOPs in the
display order. The length of a tick is given by VOP_time_increment_resolution. It can take a value in the range of
[0,VOP_time_increment_resolution). The number of bits representing the value is calculated as the minimum
number of unsigned integer bits required to represent the above range. fixed_VOP_time_increment shall only be
present if fixed_VOP_rate is '1' and its value must be identical to the constant given by the distance between the
display time of any two successive VOPs in the display order. In this case, the fixed VOP rate is given as
(VOP_time_increment_resolution / fixed_VOP_time_increment). A zero value is forbidden.

EXAMPLE
VOP time = tick × vop_time_increment

= vop_time_increment / vop_time_increment_resolution

Table 6-15 -- Examples of vop_time_increment_resolution, fix_vop_time_increment, and
vop_time_increment

Fixed VOP rate =
1/VOP time

vop_time_increment_
resolution

fixed_vop_time_
increment

vop_time_increment

15Hz 15 1 0, 1, 2, 3, 4,…

7.5Hz 15 2 0, 2, 4, 6, 8,…
29.97…Hz 30000 1001 0, 1001, 2002, 3003,…
59.94…Hz 60000 1001 0, 1001, 2002, 3003,…

video_object_layer_width : The video_object_layer_width is a 13-bit unsigned integer representing the width of
the displayable part of the luminance component in pixel units. The width of the encoded luminance component of
VOPs in macroblocks is (video_object_layer_width+15)/16. The displayable part is left -aligned in the encoded
VOPs. A zero value is forbidden.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

124

video_object_layer_height: The video_object_layer_height is a 13-bit unsigned integer representing the height of
the displayable part of the luminance component in pixel units. The height of the encoded luminance component of
VOPs in macroblocks is (video_object_layer_height+15)/16. The displayable part is top-aligned in the encoded
VOPs. A zero value is forbidden.

interlaced: This is a 1 bit flag which, when set to “1 ” indicates that the VOP may contain interlaced video. When
this flag is set to “0 ”, the VOP is of non-interlaced (or progressive) format.

obmc_disable: This is a one-bit flag which when set to ‘1’ disables overlapped block motion compensation.

sprite_enable : When video_object_layer_verid == ‘0001’, this is a one-bit flag which when set to ‘1’ indicates the
usage of static (basic or low latency) sprite coding. When video_object_layer_verid == ‘0002’, this is a two-bit
unsigned integer which indicates the usage of static sprite coding or global motion compensation (GMC). Table V2
- 2 shows the meaning of various codewords. An S-VOP with sprite_enable == “GMC” is referred to as an S
(GMC)-VOP in this document.

Table V2 - 2 -- Meaning of sprite_enable codewords

sprite_enable
(video_object_layer_v
erid == ‘0001’)

sprite_enable
(video_object_layer_v
erid == ‘0002’)

Sprite Coding Mode

0 00 sprite not used
1 01 static (Basic/Low Latency)

− 10 GMC (Global Motion Compensation)

− 11 Rese rved

sprite_width: This is a 13-bit unsigned integer which identifies the horizontal dimension of the sprite.

sprite_height: This is a 13-bit unsigned integer which identifies the vertical dimension of the sprite.

sprite_left_coordinate : This is a 13 -bit signed integer which defines the left edge of the sprite. The value of
sprite_left_coordinate shall be divisible by two.

sprite_top_coordinate : This is a 13-bit signed integer which defines the top edge of the sprite. The value of
sprite_top_coordinate shall be divisible by two.

no_of_sprite_warping_points: This is a 6-bit unsigned integer which represents the number of points used in
sprite warping. When its value is 0 and when sprite_enable is set to ‘static’ or ‘GMC’, warping is identity (stationary
sprite) and no coordinates need to be coded. When its value is 4, a perspective transform is used. When its value
is 1,2 or 3, an affine transform is used. Further, the case of value 1 is separated as a special case from that of
values 2 or 3. Table 6-16 shows the various choices. Note that the value of 4 is disallowed when sprite_enable ==
‘GMC’.

Table 6-16 -- Number of point and implied warping function

Number of points warping function

0 Stationary
1 Translation
2,3 Affine
4 Perspective
5-63 Reserved

sprite_warping_accuracy – This is a 2-bit code which indicates the quantisation accuracy of motion vectors used
in the warping process for sprites and GMC. Table 6-17 shows the meaning of various codewords

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

125

Table 6-17 -- Meaning of sprite warping accuracy codewords

code sprite_warping_accuracy

00 ½ pixel
01 ¼ pixel
10 1/8 pixel
11 1/16 pixel

sprite_brightness_change: This is a one -bit flag which when set to ‘1’ indicates a change in brightness during
sprite warping, alternatively, a value of ‘0’ means no change in brightness.

low_latency_sprite_enable : This is a one-bit flag which when set to "1" indicates the presence of low_latency
sprite, alternatively, a value of "0" means basic sprite.

not_8_bit: This one bit flag is set when the video data precision is not 8 bits per pixel and visual object type is N-bit.

sadct_disable: This is a one -bit flag specifying the inverse transforms to be used for texture decoding. If
‘ sadct_disable’ is set to ‘1 ’, standard inverse DCT as described in version 1 is applied to all 8x8-blocks. When set
to ‘0 ’, flag ‘ sadct_disable’ indicates that different types of inverse DCT are used in an adaptive way: standard
inverse DCT is applied to those 8x8-blocks where all 64 pels are opaque, whereas inverse shape-adaptive DCT
(SA-DCT) and inverse ∆DC-SA-DCT – an extended version of SA-DCT - are used in inter- and intra -coded 8x8 -
blocks with at least one transparent and one opaque pel .

quant_precision: This field specifies the number of bits used to represent quantiser parameters. Values between
3 and 9 are allowed. When not_8_bit is zero, and therefore quant_precision is not transmitted, it takes a default
value of 5.

bits_per_pixel: This field specifies the video data precision in bits per pixel. It may take different values for
different video object layers within a single video object. A value of 12 in this field would indicate 12 bits per pixel.
This field may take values between 4 and 12. When not_8_bit is zero and bits_per_pixel is not present, the video
data precision is always 8 bits per pixel, which is equivalent to specifying a value of 8 in this field. The same
number of bits per pixel is used in the luminance and two chrominance planes. The alpha plane, used to specify
shape of video objects, is always represented with 8 bits per pixel.

no_gray_quant_update : This is a one bit flag which is set to ‘1 ’ when a fixed quantiser is used for the decoding of
grayscale alpha data. When this flag is set to ‘0 ’, the grayscale alpha quantiser is updated on every macroblock by
generating it anew from the luminance quantiser value, but with an appropriate scale factor applied. See the
description in subclause 7.5.4.3 .

composition_method : This is a one bit flag which indicates which blending method is to be applied to the video
object in the compositor. When set to ‘0 ’, cross-fading shall be used. When set to ‘1’, additive mixing shall be used.
See subclause 7.5.4.6.

linear_composition: This is a one bit flag which indicates the type of signal used by the compositing process.
When set to ‘0’ , the video signal in the format from which it was produced by the video decoder is used. When set
to ‘1’, linear signals are used. See subclause 7.5.4.6.

quant_type: This is a one-bit flag which when set to ‘1 ’ that the first inverse quantisation method and when set to
‘0’ indicates that the second inverse quantisation method is used for inverse quantisation of the DCT coefficients.
Both inverse quantisation methods are described in subclause 7.4.4 . For the first inverse quantisation method, two
matrices are used, one for intra blocks the other for non-intra blocks.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

126

The default matrix for intra blocks is:

8 17 18 19 21 23 25 27

17 18 19 21 23 25 27 28

20 21 22 23 24 26 28 30

21 22 23 24 26 28 30 32

22 23 24 26 28 30 32 35

23 24 26 28 30 32 35 38

25 26 28 30 32 35 38 41

27 28 30 32 35 38 41 45

The default matrix for non-intra blocks is:

16 17 18 19 20 21 22 23

17 18 19 20 21 22 23 24

18 19 20 21 22 23 24 25

19 20 21 22 23 24 26 27

20 21 22 23 25 26 27 28

21 22 23 24 26 27 28 30

22 23 24 26 27 28 30 31

23 24 25 27 28 30 31 33

load_intra_quant_mat: This is a one-bit flag which is set to ‘1’ when intra_quant_mat follows. If it is set to ‘0 ’ then
there is no change in the values that shall be used.

intra_quant_mat: This is a list of 2 to 64 eight-bit unsigned integers. The new values are in zigzag scan order and
replace the previous values. A value of 0 indicates that no more values are transmitted and the remaining, non -
transmitted values are set equal to the last non-zero value. The first value shall always be 8 and is not used in the
decoding process.

load_nonintra_quant_mat: This is a one-bit flag which is set to ‘1 ’ when nonintra_quant_mat follows. If it is set to
‘0 ’ then there is no change in the values that shall be used.

nonintra_quant_mat: This is a list of 2 to 64 eight-bit unsigned integers. The new values are in zigzag scan order
and replace the previous values. A value of 0 indicates that no more values are transmitted and the remaining, non -
transmitted values are set equal to the last non-zero value. The first value shall not be 0.

load_intra_quant_mat_grayscale: This is a one-bit flag which is set to ‘1’ when intra_quant_mat_grayscale
follows. If it is set to ‘0 ’ then there is no change in the quantisation matrix values that shall be used.

intra_quant_mat_grayscale: This is a list of 2 to 64 eight-bit unsigned integers defining the grayscale intra alpha
quantisation matrix to be used. The semantics and the default quantisation matrix are identical to those of
intra_quant_mat.

load_nonintra_quant_mat_grayscale : This is a one -bit flag which is set to ‘1’ when
nonintra_quant_mat_grayscale[i] follows for grayscale alpha or auxiliary component i=0,1,2. If it is set to ‘0’ then
there is no change in the quantisation matrix values that shall be used.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

127

intra_quant_mat_grayscale[i]: This is a list of 2 to 64 eight-bit unsigned integers defining the grayscale intra
alpha quantisation matrix to be used for grayscale alpha or auxiliary component i=0,1,2. The semantics and the
default quantisation matrix are identical to those of intra_quant_mat.

nonintra_quant_mat_grayscale : This is a list of 2 to 64 eight -bit unsigned integers defining the grayscale
nonintra alpha quantisation matrix[i] to be used for grayscale alpha or auxiliary component i=0,1,2 . The semantics
and the default quantisation matrix are identical to those of nonintra_quant_mat.

nonintra_quant_mat_grayscale[i]: This is a list of 2 to 64 eight-bit unsigned integers defining the grayscale
nonintra alpha quantisation matrix to be used for grayscale alpha or auxiliary component i=0,1,2. The semantics
and the default quantisation matrix are identical to those of nonintra_quant_mat.

qua rter_sample: This is a one-bit flag which when set to ‘0’ indicates that half sample mode and when set to ‘1’
indicates that quarter sample mode shall be used for motion compensation of the luminance component.

complexity_estimation_disable : This is a one-bit flag which, when set to '1', disables complexity estimation
header in each VOP.

estimation_method: Setting of the of the estimation method, it is „00“ for Version 1 and “01” for version 2.

shape_complexity_estimation_disable: This is a one-bit flag which when set to '1' disables shape complexity
estimation.

opaque : Flag enabling transmission of the number of luminance and chrominance blocks coded using opaque
coding mode in % of the total number of blocks (bounding rectangle).

transparent: Flag enabling transmission of the number of luminance and chrominance blocks coded using
transparent mode in % of the total number of blocks (bounding rectangle).

intra_cae: Flag enabling transmission of the number of luminance and chrominance blocks coded using IntraCAE
coding mode in % of the total number of blocks (bounding rectangle).

inter_cae: Flag enabling transmission of the number of luminance and chrominance blocks coded using InterCAE
coding mode in % of the total number of blocks (bounding rectangle).

no_update : Flag enabling transmission of the number of luminance and chrominance blocks coded using no
update coding mode in % of the total number of blocks (bounding rectangle).

upsampling: Flag enabling transmission of the number of luminance and chrominance blocks which need
upsampling from 4-4- to 8 -8 block dimensions in % of the total number of blocks (bounding rectangle).

version2_complexity_estimation_disable : Flag to disable version 2 parameter set.

sadct: Flag enabling transmission of the number of luminance and chrominance blocks coded using SADCT
coding mode in % of the total number of blocks (bounding box). When estimation_method == ‘00 ’ the value of sadct
is set to ‘0’.

quarterpel: Flag enabling transmission of the number of luminance and chrominance block predicted by a quarter-
pel vector on one or two dimensions (horizontal and vertical) in % of the total number of blocks (bounding box).
When estimation_method == ‘00’ the value of quarterpel is set to ‘0’.

texture_complexity_estimation_set_1_disable: Flag to disable texture parameter set 1.

intra_blocks: Flag enabling transmission of the number of luminance and chrominance Intra or Intra+Q coded
blocks in % of the total number of blocks (bounding rectangle).

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

128

inter_blocks: Flag enabling tra nsmission of the number of luminance and chrominance Inter and Inter+Q coded
blocks in % of the total number of blocks (bounding rectangle).

inter4v_blocks: Flag enabling transmission of the number of luminance and chrominance Inter4V coded blocks in
% of the total number of blocks (bounding rectangle).

not_coded_blocks: Flag enabling transmission of the number of luminance and chrominance Non Coded blocks
in % of the total number of blocks (bounding rectangle).

texture_complexity_estimation_set_2_disable: Flag to disable texture parameter set 2.

dct_coefs : Flag enabling transmission of the number of DCT coefficients % of the maximum number of
coefficients (coded blocks).

dct_lines : Flag enabling transmission of the number of DCT8x1 in % of the maximum number of DCT8x1 (coded
blocks).

vlc_symbols: Flag enabling transmission of the average number of VLC symbols for macroblock.

vlc_bits: Flag enabling transmission of the average number of bits for each symbol.

motion_compensation_complexity_disable: Flag to disable motion compensation parameter set .

apm (Advanced Prediction Mode): Flag enabling transmission of the number of luminance block predicted using
APM in % of the total number of blocks for VOP (bounding rectangle).

npm (Normal Prediction Mode): Flag enabling transmission of the number of luminance and chrominance blocks
predicted using NPM in % of the total number of luminance and chrominance for VOP (bounding rectangle).

interpolate_mc_q: Flag enabling transmission of the number of luminance and chrominance interpolated blocks in
% of the total number of blocks for VOP (bounding rectangle).

forw_back_mc_q: Flag enabling transmission of the number of luminance and chrominance predicted blocks in %
of the total number of blocks for VOP (bounding rectangle).

halfpel2 : Flag enabling transmission of the number of luminance and chrominance block predicted by a half-pel
vector on one dimension (horizontal or vertical) in % of the total number of blocks (bounding rectangle).

halfpel4 : Flag enabling transmission of the number of luminance and chrominance block predicted by a half-pel
vector on two dimensions (horizontal and vertical) in % of the total number of blocks (bounding rectangle).

resync_marker_disable : This is a one-bit flag which when set to ‘1‘ indicates that there is no resync_marker in
coded VOPs. This flag can be used only for the optimization of the decoder operation. Successful decoding can be
carried out without taking into account the value of this flag.

data_partitioned: This is a one-bit flag which when set to ‘1’ indicates that the macroblock data is rearranged
differently, specifically, motion vector data is separated from the texture data (i.e., DCT coefficients).

reversible_vlc: This is a one-bit flag which when set to ‘1’ indicates that the reversible variable length tables
(Table B-23, Table B-24 and Table B-25) should be used when decoding DCT coefficients. These tables can only
be used when data_partition flag is enabled. Note that this flag shall be treated as ‘0’ in B-VOPs. Use of escape
sequence (Table B-24 and Table B-25) for encoding the combinations listed in Table B-23 is prohibited.

newpred_enable: This is a one-bit flag which, when set to ‘1 ’ ,indicates that the NEWPRED mode is enabled.
When video_object_layer_verid is equal to ’0001’ , and therefore newpred enable is not transmitted, it takes a
default value of zero .

requested_upstream_message_type: This is a twe -bits flag which indicates which type of upstream message is
needed by the encoder. The syntax and semantics of the upstream message are described in subclause 6.2.12
and 6.3.12.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

129

01: need NP_ACK message to be returned for each NEWPRED segment
10: need NP_NACK message to be returned for each NEWPRED segment
11: need both NP_ACK and NP_NACK messages to be returned for each NEWPRED segment
00: reserved

newpred_segment_type: This is a one -bits flag which indicates the unit of selecting reference VOP (NEWPRED
segment).

0: Video Packet
1: VOP

reduced_resolution_vop_enable: This is a one -bit flag which indicates that the reduced resolution vop tool is
enabled when set to ‘1 ’. When video_object_layer_verid is equal to ’0001’, and therefore
reduced_resolution_vop_enable is not transmitted, it takes a default value of zero.

scalability: This is a one-bit flag which when set to ‘1 ’ indicates that the current layer uses scalable coding. If the
current layer is used as base-layer then this flag is set to ‘0 ’. Additionally, this flag shall be set to ‘0’ for S(GMC)-
VOPs.

hierarchy_type: The hierarcical relation between the associated hierarchy layer and its hierarchy embedded layer
is defined as shown in Table 6-18.

Table 6-18 -- Code table for hierarchy_type

Description Code

ISO/IEC 14496-2 Spatial Scalability 0
ISO/IEC 14496-2 Temporal Scalability 1

ref_layer_id: This is a 4-bit unsigned integer with value between 0 and 15. It indicates the layer to be used as
reference for prediction(s) in the case of scalability.

ref_layer_sampling_direc: This is a one-bit flag which when set to ‘1’ indicates that the resolution of the reference
layer (specified by reference_layer_id) is higher than the resolution of the layer being coded. If it is set to ‘0 ’ then
the reference layer has the same or lower resolution than the resolution of the layer being coded.

hor_sampling_factor_n: This is a 5-bit unsigned integer which forms the numerator of the ratio used in horizontal
spatial resampling in scalability. The value of zero is forbidden.

hor_sampling_factor_m: This is a 5-bit unsigned integer which forms the denominator of the ratio used in
horizontal spatial resampling in scalability. The value of zero is forbidden.

vert_sampling_factor_n: This is a 5-bit unsigned integer which forms the numerator of the ratio used in vertical
spatial resampling in scalability. The value of zero is forbidden.

vert_sampling_factor_m: This is a 5-bit unsigned integer which forms the denominator of the ratio used in
vertical spatial resampling in scalability. The value of zero is forbidden.

enhancement_type : This is a 1-bit flag which is set to ‘1’ when the current layer enhances the partial region of the
reference layer. If it is set to ‘0’ then the current layer enhances the entire region of the reference layer. The default
value of this flag is ‘0’.

use_ref_shape : This is one bit flag which indicate procedure to decode binary shape for spatial scalability. If it is
set to ‘0 ’, scalable shape coding should be used. If it is set to ‘1’ and enhancement_type is set to ‘0 ’, no shape data
is decoded and up-sampled binary shape of base layer should be used for enhancement layer. If
enhancement_type is set to ‘1’ and this flag is set to ‘1’,binary shape of enhancement layer should be decoded as

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

130

the same non-scalable decoding process. When video_object_layer_verid == ‘0001’, the value of use_ref_shape_
is set to ‘1’.

use_ref_texture: When this one bit is set, no update for texture is done. Instead, the available texture in the layer
denoted by ref_layer_id will be used.

shape_hor_sampling_factor_n: This is a 5-bit unsigned integer which forms the numerator of the ratio used in
horizontal spatial resampling in shape scalability. The value of zero is forbidden.

shape_hor_sampling_factor_m: This is a 5-bit unsigned integer which forms the denominator of the ratio used in
horizontal spatial resampling in shape scalability. The value of zero is forbidden.

shape_vert_sampling_factor_n: This is a 5-bit unsigned integer which forms the denominator of the ratio used in
vertical spatial resampling in shape scalability. The value of zero is forbidden.

shape_vert_sampling_factor_m: This is a 5-bit unsigned integer which forms the denominator of the ratio used in
vertical spatial resampling in shape scalability. The value of zero is forbidden.

6.3.4 Group of Video Object Plane

group_of_vop_start_code : The group_of_vop_start_code is the bit string ‘000001B3’ in hexadecimal. It identifies
the beginning of a GOV header.

time_code: This is a 18-bit integer containing the following: time_code_hours, time_code_minutes, marker_bit and
time_code_seconds as shown in Table 6-19. The parameters correspond to those defined in the IEC standard
publication 461 for “time and control codes for video tape recorders”. The time code specifies the modulo part (i.e.
the full second units) of the time base for the first object plane (in display order) after the GOV header.

Table 6-19 -- Meaning of time_code

time_code range of value No. of bits Mnemonic

time_code_hours 0 - 23 5 uimsbf
time_code_minutes 0 - 59 6 uimsbf
marker_bit 1 1 bslbf
time_code_seconds 0 - 59 6 uimsbf

closed_gov : This is a one-bit flag which indicates the nature of the predictions used in the first consecutive B-
VOPs (if any) immediately following the first coded I-VOP after the GOV header .The closed_gov is set to ‘1’ to
indicate that these B-VOPs have been encoded using only backward prediction or intra coding. This bit is provided
for use during any editing which occurs after encoding. If the previous pictures have been removed by editing,
broken_link may be set to ‘1’ so that a decoder may avoid displaying these B-VOPs following the first I-VOP
following the group of plane header. However if the closed_gov bit is set to ‘1 ’, then the editor may choose not to
set the broken_link bit as these B-VOPs can be correctly decoded.

broken_link: This is a one-bit flag which shall be set to ‘0’ during encoding. It is set to ‘1 ’ to indicate that the first
consecutive B-VOPs (if any) immediately following the first coded I-VOP following the group of plane header may
not be correctly decoded because the reference frame which is used for prediction is not available (because of the
action of editing). A decoder may use this flag to avoid displaying frames that cannot be correctly decoded.

6.3.5 Video Object Plane and Video Plane with Short Header

vop_start_code: This is the bit string ‘ 000001B6’ in hexadecimal. It marks the start of a video object plane.

vop_coding_type: The vop_coding_type identifies whether a VOP is an intra-coded VOP (I), predictive-coded
VOP (P), bidirectionally predictive-coded VOP (B) or sprite coded VOP (S). The meaning of vop_coding_type is
defined in Table 6-20 .

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

131

Table 6-20 -- Meaning of vop_coding_type

vop_coding_type coding method

00 intra-coded (I)
01 predictive-coded (P)
10 bidirectionally-predictive -coded (B)
11 sprite (S)

modulo_time_base: This value represents the local time base in one second resolution units (1000 milliseconds).
It consists of a number of consecutive ‘1 ’ followed by a ‘0’. Each ‘1’ represents a duration of one second that have
elapsed. For I-, S(GMC)-, and P-VOPs of a non scalable bitstream and the base layer of a scalable bitstream, the
number of ‘1’ s indicate the number of seconds elapsed since the synchronization point marked by time_code of
the previous GOV header or by modulo_time_base of the previously decoded I-, S(GMC)-, or P-VOP, in decoding
order. For B-VOP of non scalable bitstream and base layer of scalable bitstream, the number of ‘1’ sindicate the
number of seconds elapsed since the synchronization point marked in the previous GOV header, I-VOP, S(GMC)-
VOP, or P-VOP, in display order. For I-, P-, or B-VOPs of enhancement layer of scalable bitstream, the number of
‘1’ s indicate the number of seconds elapsed since the synchronization point marked in the previous GOV header, I-
VOP, P-VOP, or B-VOP, in display order.

vop_time_increment : This value represents the absolute vop_time_increment from the synchronization point
marked by the modulo_time_base measured in the number of clock ticks. It can take a value in the range of
[0,vop_ti me_increment_resolution). The number of bits representing the value is calculated as the minimum
number of unsigned integer bits required to represent the above range. The local time base in the units of seconds
is recovered by dividing this value by the vop_time_increment_resolution.

vop_coded: This is a 1-bit flag which when set to '0' indicates that no subsequent data exists for the VOP. In this
case, the following decoding rules apply: If binary shape or alpha plane does exist for the VOP (i.e.
video_object_layer_shape != "rectangular"), it shall be completely transparent. If binary shape or alpha plane does
not exist for the VOP (i.e. video_object_layer_shape == "rectangular"), the luminance and chrominance planes of
the reconstructed VOP shall be filled with the forward reference VOP as defined in subclause 7.6.7.

vop_rounding_type: This is a one-bit flag which signals the value of the parameter rounding_control used for
pixel value interpolation in motion compensation for P- and S(GMC)- VOPs. When this flag is set to ‘0’, the value of
rounding_control is 0, and when this flag is set to ‘1 ’, the value of rounding_control is 1. When vop_rounding_type
is not present in the VOP header, the value of rounding_control is 0.

vop_reduced_resolution: This single bit flag signals whether the VOP is encoded in spatialy reduced resolution or
not. When vop_reduced_resolution is not transmitted, it takes a default value of zero. When this flag is set to ‘1’,
the VOP is encoded spatialy reduced resolution and referred as Reduced Resolution VOP. Reduced Resolution
VOP shall be decoded by the texture decoding process including upsampling of IDCT output, and motion
compensation decoding process of Reduced Resolution VOP. In this case, the width of the encoded luminance
component of the vop in macroblocks is (video_object_layer_width+31)/32 and the the height of the encoded
luminance component of the vop in macroblocks is (video_object_layer_height+31)/32. The displayable part is top
and left-aligned in the encoded vop. This flag shall not be the ‘1 ’ when the (video_object_layer_width+15)/16 is not
the multiple of 2 or the (video_object_layer_width+15)/16 is not the multiple of 2. When this flag is set to “0” or this
flag is not present, the VOP is encoded in normal spatial resolution and shall be decoded by the normal decoding
process.

vop_width: This is a 13-bit unsigned integer which specifies the horizontal size, in pixel units, of the rectangle that
includes the VOP. The width of the encoded luminance component of VOP in macroblocks is (vop_width+15)/16.
The rectangle part is left-aligned in the encoded VOP. A zero value is forbidden.

vop_height: This is a 13 -bit unsigned integer which specifies the vertical size, in pixel units, of the rectangle that
includes the VOP. The height of the encoded luminance component of VOP in macroblocks is (vop_height+15)/16.
The rectangle part is top-aligned in the encoded VOP. A zero value is forbidden.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

132

vop_horizontal_mc_spatial_ref: This is a 13-bit signed integer which specifies, in pixel units, the horizontal
position of the top left of the rectangle defined by horizontal size of vop_width. The value of
vop_horizontal_mc_spatial_ref shall be divisible by two. This is used for decoding and for picture composition.

vop_vertical_mc_spatial_ref: This is a 13-bit signed integer which specifies, in pixel units, the vertical position of
the top left of the rectangle defined by vertical size of vop_width. The value of vop_vertical_mc_spatial_ref shall be
di visible by two for progressive and divisible by four for interlaced motion compensation. This is used for decoding
and for picture composition.

background_composition: This flag only occurs when scalability flag has a value of “1. This flag is used in
conjunction with enhancement_type flag. If enhancement_type is “1 ”, hierarchy_type is “1 ”, and this flag is “1 ”,
background composition specified in subclause 8.1 is performed. If enhancement type is “1”, hierarchy_type is “1”
and this flag is “0 ”, any method can be used to make a background for the enhancement layer.

When hierarchy_type is “0”, video_object_layer_shape i s “binary” (object based spatial scalability),
enhancement_type is “ 1”, and background_compositin flag is “1 ”, background composition specified in subclause
8.4 is performed and when enhancement_type is “1” and this flag is “0”, any method can be used to make a
background for the enhancement layer.

change_conv_ratio_disable: This is a 1-bit flag which when set to ‘1 ’ indicates that conv_ratio is not sent at the
macroblock layer and is assumed to be 1 for all the macroblocks of the VOP. When set to ‘0’, the conv_ratio is
coded at macroblock layer.

vop_constant_alpha : This bit is used to indicate the presence of vop_constant_alpha_value. When this is set to
one, vop_constant_alpha_value is included in the bitstream.

vop_constant_alpha_value: This is an unsigned integer which indicates the scale factor to be applied as a post
processing phase of binary or grayscale shape decoding. See subclause 7.5.4.2.

intra_dc_vlc_thr: This is a 3-bit code allows a mechanism to switch between two VLC’ s for coding of Intra DC
coefficients as per Table 6-21.

Table 6-21 -- Meaning of intra_dc_vlc_thr

index meaning of intra_dc_vlc_thr code

0 Use Intra DC VLC for entire VOP 000
1 Switch to Intra AC VLC at running Qp >=13 001
2 Switch to Intra AC VLC at running Qp >=15 010
3 Switch to Intra AC VLC at running Qp >=17 011
4 Switch to Intra AC VLC at running Qp >=19 100
5 Switch to Intra AC VLC at running Qp >=21 101
6 Switch to Intra AC VLC at running Qp >=23 110
7 Use Intra AC VLC for entire VOP 111

Where running Qp is defined as the DCT quantisation parameter for luminance and chrominance used for
immediately previous coded macroblock, except for the first coded macroblock in a VOP or a video packet. At the
first coded macroblock in a VOP or a video packet, the running Qp is defined as the quantisation parameter value
for the current macroblock.

top_field_first: This is a 1-bit flag which when set to “1 ” indicates that the top field (i.e., the field containing the top
line) of reconstructed VOP is the first field to be displayed (output by the decoding process). When top_field_first is
set to “0 ” it indicates that the bottom field of the reconstructed VOP is the first field to be displayed.

alternate_vertical_scan_flag: This is a 1-bit flag which when set to “1” indicates the use of alternate vertical scan
for interlaced VOPs.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

133

sprite_transmit_mode : This is a 2-bit code which signals the transmission mode of the sprite object. At video
object layer initialization, the code is set to “piece” mode. When all object and quality update pieces are sent for
the entire video object layer, the code is set to the “ stop” mode. When an object piece is sent, the code is set to
“piece” mode. When an update piece is being sent, the code is set to the “update” mode. When all sprite object
pieces andquality update pieces for the current VOP are sent, the code is set to “pause” mode. Table 6-22 shows
the different sprite transmit modes.

Table 6-22 -- Meaning of sprite transmit modes

code sprite_transmit_mode

00 stop
01 piece
10 update
11 pause

vop_quant : This is an unsigned integer which specifies the absolute value of quant to be used for dequantizing
the macroblock until updated by any subsequent dquant, dbquant, or quant_scale. The length of this field is
specified by the value of the parameter quant_precision. The default length is 5-bits which carries the binary
representation of quantizer values from 1 to 31 in steps of 1.

vop_alpha_quant[i]: This is a an unsigned integer which specifies the absolute value of the initial alpha plane
quantiser to be used for dequantising macroblock grayscale alpha data in alpha or auxiliary component i=0,1,2.
The alpha plane quantiser cannot be less than 1.

vop_fcode_forward: This is a 3-bit unsigned integer taking values from 1 to 7; the value of zero is forbidden. It is
used in decoding of motion vectors.

vop_fcode_backward: This is a 3-bit unsigned integer taking values from 1 to 7; the value of zero is forbidden. It
is used in decoding of motion vectors.

vop_shape_coding_type : This is a 1 bit flag which specifies whether inter shape decoding is to be carried out for
the current P, B, or S(GMC)-VOP. If vop_shape_coding_type is equal to ‘0 ’, intra shape decoding is carried out,
otherwise inter shape decoding is carried out.

Coded data for the top -left macroblock of the bounding rectangle of a VOP shall immediately follow the VOP
header, followed by the remaining macroblocks in the bounding rectangle in the conventional left -to-right, top-to-
bottom scan order. Video packets shall also be transmitted following the conventional left-to-right, top-to-bottom
macroblock scan order. The last MB of one video packet is guaranteed to immediately precede the first MB of the
following video packet in the MB scan order.

load_backward_shape : This is a one-bit flag which when set to ‘1 ’ implies that the backward shape of the
previous VOP in the same layer is copied to the forward shape for the current VOP and the backward shape of the
current VOP is decoded from the bitstream. When this flag is set to ‘0’, the forward shape of the previous VOP is
copied to the forward_shape of the current VOP and the backward shape of the previous VOP in the same layer is
copied to the backward shape of the current VOP. This flag shall be ‘1’ when (1) background_composition is ‘1’ and
vop_coded of the previous VOP in the same layer is ‘0’ or (2) background_composition is ‘1’ and the current VOP is
the first VOP in the current layer.

If hierarchy_type is “0” and video_object_layer_shape is “ binary” (object based spatial scalability), then this flag
shall be set to “0”.

backward_shape_width: This is a 13-bit unsigned integer which specifies the horizontal size, in pixel units, of the
rectangle that includes the backward shape. A zero value is forbidden.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

134

backward_shape_height : This is a 13-bit unsigned integer which specifies the vertical size, in pixel units, of the
rectangle that includes the backward shape. A zero value is forbidden.

backward_shape_horizontal_mc_spatial_ref: This is a 13-bit signed integer which specifies, in pixel units, the
horizontal position of the top left of the rectangle that includes the backward shape. This is used for decoding and
for picture composition.

backward_shape_vertical_mc_spatial_ref: This is a 13-bit signed integer which specifies, in pixel units, the
vertical position of the top left of the rectangle that includes the backward shape. This is used for decoding and for
picture composition.

backward_shape(): The decoding process of the backward shape is identical to the decoding process for the
shape of I-VOP with binary only mode (video_object_layer_shape = “10”).

load_forward_shape : This is a one -bit flag which when set to ‘1’ implies that the forward shape is decoded from
the bitstream. This flag shall be ‘1 ’ when (1) background_composition is ‘1 ’ and vop_coded of the previous VOP in
the same layer is ‘0’ or (2) background_composi tion is ‘1’ and the current VOP is the first VOP in the current layer.

forward_shape_width: This is a 13-bit unsigned integer which specifies the horizontal size, in pixel units, of the
rectangle that includes the forward shape. A zero value is forbidden .

forward_shape_height: This is a 13-bit unsigned integer which specifies the vertical size, in pixel units, of the
rectangle that includes the forward shape. A zero value is forbidden.

forward_shape_horizontal_mc_spatial_ref: This is a 13-bit signed in teger which specifies, in pixel units, the
horizontal position of the top left of the rectangle that includes the forward shape. This is used for decoding and for
picture composition.

forward_shape_vertical_mc_spatial_ref: This is a 13-bit signed integer which specifies, in pixel units, the
vertical position of the top left of the rectangle that includes the forward shape. This is used for decoding and for
picture composition.

forward_shape(): The decoding process of the backward shape is identical to the decoding process for the shape
of I-VOP with binary only mode (video_object_layer_shape = “10”).

ref_select_code : This is a 2-bit unsigned integer which specifies prediction reference choices for P- and B-VOPs
in enhancement layer with respect to decoded reference layer identified by ref_layer_id. The meaning of allowed
values is specified in Table 7-13 and Table 7-14 .

resync_marker: This is a binary string of at least 16 zero’s followed by a one‘0 0000 0000 0000 0001’. For an I-
VOP or a VOP where video_object_layer_shape has the value “binary_only”, the resync marker is 16 zeros
followed by a one. The length of this resync marker is dependent on the value of vop_fcode_forward, for a P-VOP
or a S(GMC)-VOP, and the larger value of either vop_fcode_forward and vop_fcode_backward for a B-VOP. The
relationship between the length of the resync_marker and appropriate fcode is given by 16 + fcode. The
resync_marker is (15+fcode) zeros followed by a one. It is only present when resync_marker_disable flag is set to
‘0 ’. A resync marker shall only be located immediately before a macroblock and aligned with a byte

macroblock_number: This is a variable length code with length between 1 and 14 bits. It identifies the
macroblock number within a VOP. The number of the top-left macroblock in a VOP shall be zero. The macroblock
number increases from left to right and from top to bottom. The actual length of the code depends on the total
number of macroblocks in the VOP calculated according to Table 6-23 , the code itself is simply a binary
representation of the macroblock number. If reduced_resolution_vop_enable is equal to one, the length of
macroblock_number code shall be determined by as if the total number of macroblocks in a VOP in Table 6-2 -3 be
equal to ((video_object_layer_width+15)/16) * ((video_object_layer_height+15)/16).

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

135

Table 6-23 -- Length of macroblock_number code

length of macroblock_number code ((vop_width+15)/16) *
((vop_height+15)/16)

1 1-2
2 3-4
3 5-8
4 9-16
5 17-32

6 33-64
7 65-128
8 129-256
9 257-512
10 513-1024
11 1025-2048
12 2049-4096
13 4097-8192
14 8193-16384

quant_scale : This is an unsigned integer which specifies the absolute value of quant to be used for dequantizing
the macroblock of the video packet until updated by any subsequent dquant. The length of this field is specified by
the value of the parameter quant_precision. The default length is 5-bits.

header_extension_code: This is a 1-bit flag which when set to ‘1 ’ indicates the prescence of additional fields in
the header. When header_extension_code is is se to ‘1 ’, modulo_time_base, vop_time_increment and
vop_coding_type are also included in the video packet header. Furthermore, if the vop_coding_type is equal to
either a P, S or B VOP, the appropriate fcodes are also present. Additionally, if the current VOP is an S(GMC)-
VOP, sprite_trajectory() is included. And if reduced_resolution_vop_enable is equal to one,
vop_reduced_resolution is also present.

use_intra_dc_vlc: The value of this internal flag is set to 1 when the values of intra_dc_thr and the DCT quantiser
for luminance and chrominace indicate the usage of the intra DC VLCs shown in Table B-13 - Table B-15 for the
decoding of intra DC coefficients. Otherwise, the value of this flag is set to 0.

motion_marker: This is a 17 -bit binary string ‘1 1111 0000 0000 0001’. It is only present when the
data_partitioned flag is set to ‘1 ’.In the data partitioning mode, a motion_marker is inserted after the motion data
(prior to the texture data). The motion_marker is unique from the motion data and enables the decoder to
determine when all the motion information has been received correctly.

dc_marker: This is a 19 bit binary string ‘110 1011 0000 0000 0001’. It is present when the data_partitioned flag
is set to ‘1’. It is used for I-VOPs. In the data partitioning mode, a dc_marker is inserted into the bitstream after
the mcbpc, dquant and dc data but before the ac_pred flag and remaining texture information.

vop_id: This indicates the ID of VOP which is incremented by 1 whenever a VOP is encoded. All ‘0’ value is
skipped in vop_id in order to prevent the resync_marker emulation. The bit length of vop_id is the smaller value
between (the length of vop_time_increment) + 3 and 15.

vop_id_for_prediction_indication : This is a one-bit flag which indicates the existence of the following
vop_id_for_prediction field.

0: vop_id_for_prediction does not exist.
1: vop_id_for_prediction does exist.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

136

vop_id_for_prediction: This indicates the vop_id of the VOP which is used as the reference VOP of the
decoding of the current VOP or Video Packet. When this field exists, the reference VOP shall be replaced with the
indicated one. This VOP which is used for prediction may be changed according to the backward channel message.
If this field does not exist, the previous VOP is used for prediction, or all MBs in the VOP or Video Packet are
coded to Intra MB.

6.3.5.1 Definition of DCECS variable values

The semantic of all complexity estimation parameters is defined at the VO syntax level. DCECS variables represent
% values. The actual % values have been converted to 8 bit words by normalization to 256. To each 8 bit word a
binary 1 is added to prevent start code emulation (i.e 0% = ‘00000001’ , 99.5% = ‘11111111’ and is conventionally
considered equal to one). The binary ‘00000000’ string is a forbidden value. The only parameter expressed in
their absolute value is the dcecs_vlc_bits parameter expressed as a 4 bit word.

dcecs_opaque: 8 bit number representing the % of luminance and chrominance blocks using opaque coding
mode on the total number of blocks (bounding rectangle).

dcecs_transparent: 8 bit number representing the % of luminance and chrominance blocks using transparent
coding mode on the total number of blocks (bounding rectangle).

dcecs_intra_cae: 8 bit number representing the % of luminance and chrominance blocks using IntraCAE coding
mode on the total number of blocks (bounding rectangle).

dcecs_inter_cae: 8 bit number representing the % of luminance and chrominance blocks using InterCAE coding
mode on the total number of blocks (bounding rectangle).

dcecs_no_update: 8 bit number representing the % of luminance and chrominance blocks using no update
coding mode on the total number of blocks (bounding rectangle).

dcecs_upsampling: 8 bit number representing the % of luminance and chrominance blocks which need
upsampling from 4-4- to 8-8 block dimensions on the total number of blocks (bounding rectangle).

dcecs_intra_blocks : 8 bit number representing the % of luminance and chrominance Intra or Intra+Q coded
blocks on the total number of blocks (bounding rectangle).

dcecs_not_coded_blocks: 8 bit number representing the % of luminance and chrominance Non Coded blocks
on the total number of blocks (bounding rectangle).

dcecs_dct_coefs: 8 bit number rep resenting the % of the number of DCT coefficients on the maximum number of
coefficients (coded blocks).

dcecs_dct_lines: 8 bit number representing the % of the number of DCT8x1 on the maximum number of DCT8x1
(coded blocks).

dcecs_vlc_symbols : 8 bit number representing the average number of VLC symbols for macroblock.

dcecs_vlc_bits: 4 bit number representing the average number of bits for each symbol.

dcecs_inter_blocks : 8 bit number representing the % of luminance and chrominance Inter and Inter+Q coded
blocks on the total number of blocks (bounding rectangle).

dcecs_inter4v_blocks: 8 bit number representing the % of luminance and chrominance Inter4V coded blocks on
the total number of blocks (bounding rectangle).

dcecs_apm (Advanced Prediction Mode): 8 bit number representing the % of the number of luminance block
predicted using APM on the total number of blocks for VOP (bounding rectangle).

dcecs_npm (Normal Prediction Mode): 8 bit number representing the % of luminance and chrominance blocks
predicted using NPM on the total number of luminance and chrominance blocks for VOP (bounding rectangle).

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

137

dcecs_forw_back_mc_q: 8 bit number representing the % of luminance and chrominance predicted blocks on the
total number of blocks for VOP (bounding rectangle).

dcecs_halfpel2: 8 bit number representing the % of luminance and chrominance blocks predicted by a half-pel
vector on one dimension (horizontal or vertical) on the total number of blocks (bounding rectangle).

dcecs_halfpel4: 8 bit number representing the % of luminance and chrominance blocks predicted by a half-pel
vector on two dimensions (horizontal and vertical) on the total number of blocks (bounding rectangle).

dcecs_interpolate_mc_q: 8 bit number representing the % of luminance and chrominance interpolated blocks in
% of the total number of blocks for VOP (bounding rectangle).

dcecs_sadct: 8 bit number representing the % of luminance and chrominance blocks coded using SADCT mode in
% of the total number of blocks for VOP (bounding rectangle).

dcecs_quarterpel : 8 bit number representing the % of luminance and chrominance blocks predicted using quarter-
pel vectors in % of the total number of blocks for VOP (bounding rectangle).

6.3.5.2 Video Plane with Short Header

video_plane_with_short_header() – This data structure contains a video plane using an abbreviated header format.
Certain values of parameters shall have pre-defined and fixed values for any video_plane_with_short_header, due
to the limited capability of signaling information in the short header format. These parameters having fixed values
are shown in Table 6-24 .

Table 6-24 -- Fixed Settings for video_plane_with_short_header()

Parameter Value

video_object_layer_shape “rectangular”
obmc_disable 1
quant_type 0
resync_marker_disable 1
data_partitioned 0

block_count 6
reversible_vlc 0
vop_rounding_type 0
vop_fcode_forward 1
vop_coded 1
interlaced 0
complexity_estimation_disable 1
use_intra_dc_vlc 0
scalability 0
not_8_bit 0
bits_per_pixel 8
colour_primaries 1
transfer_characteristics 1
matrix_coefficients 6

short_video_start_marker: This is a 22-bit start marker containing the value ‘0000 0000 0000 0000 1000 00’ . It
is used to mark the location of a video plane having the short header format. short_video_start_marker shall be
byte aligned by the insertion of zero to seven zero-valued bits as necessary to achieve byte alignment prior to
short_video_start_marker.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

138

temporal_reference : This is an 8-bit number which can have 256 possible values. It is formed by incrementing its
value in the previously transmitted video_plane_with_short_header() by one plus the number of non -transmitted
pictures (at 30000/1001 Hz) since the previously transmitted picture. The arithmetic is performed with only the eight
LSBs.

split_screen_indicator: This is a boolean signal that indicates that the upper and lower half of the decoded
picture could be displayed side by side. This bit has no direct effect on the encoding or decoding of the video plane.

document_camera_indicator: This is a boolean signal that indicates that the video content of the vop is sourced
as a representation from a document camera or graphic representation, as opposed to a view of natural video
content. This bit has no direct effect on the encoding or decoding of the video plane.

full_picture_freeze_release: This is a boolean signal that indicates that resumption of display updates should be
activated if the display of the video content has been frozen due to errors, packet losses, or for some other reason
such as the receipt of a external signal. This bit has no direct effect on the encoding or decoding of the video plane.

source_format: This is an indication of the width and height of the rectangular video plane represented by the
video_plane_with_short_header. The meaning of this field is shown in Table 6-25. Each of these source formats
has the same vop time increment resolution which is equal to 30000/1001 (approximately 29.97) Hz and the same
width:height pixel aspect ratio (288/3):(352/4), which equals 12:11 in relatively prime numbers and which defines a
CIF picture as having a width:height picture aspect ratio of 4:3.

Table 6-25 -- Parameters Defined by source_format Field

source_format
value

Source Format
Meaning

vop_width vop_height num_macroblocks_in_
gob

num_gobs_in_
vop

000 reserved reserved reserved reserved reserved
001 sub-QCIF 128 96 8 6
010 QCIF 176 144 11 9
011 CIF 352 288 22 18
100 4CIF 704 576 88 18
101 16CIF 1408 1152 352 18
110 reserved reserved reserved reserved reserved
111 reserved reserved reserved reserved reserved

picture_coding_type : This bit indicates the vop_coding_type. When equal to zero, the vop_coding_type is “ I”,
and when equal to one, the vop_coding_type is “P” .

four_reserved_zero_bits : This is a four-bit field containing bits which are reserved for future use and equal to
zero.

pei: This is a single bit which, when equal to one, indicates the presence of a byte of psupp data following the pei
bit.

psupp: This is an eight bit field which is present when pei is equal to one. The pei + psupp mechanism provides
for a reserved method of later allowing the definition of backward-compatible data to be added to the bitstream.
Decoders shall accept and discard psupp when pei is equal to one, with no effect on the decoding of the video data.
The pei and psupp combination pair may be repeated if present. The ability for an encoder to add pei and psupp to
the bitstream is reserved for future use.

gob_number: This is a five-bit number which indicates the location of video data within the video plane. A group
of blocks (or GOB) contains a number of macroblocks in raster scanning order within the picture. For a given
gob_number, the GOB contains the num_macroblocks_per_gob macroblocks starting with macroblock_number =
gob_number * num_macroblocks_per_gob. The gob_number can either be read from the bitstream or inferred
from the progress of macroblock decoding as shown in the syntax description pseudo-code.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

139

num_gobs_in_vop: This is the number of GOBs in the vop. This parameter is derived from the source_format as
shown in Table 6-25.

gob_layer(): This is a layer containing a fixed number of macroblocks in the vop. Which macroblocks which belong
to each gob can be determined by gob_number and num_macroblocks_in_gob.

gob_resync_marker: This is a fixed length code of 17 bi ts having the value ‘0000 0000 0000 0000 1’ which may
optionally be inserted at the beginning of each gob_layer(). Its purpose is to serve as a type of resynchronization
marker for error recovery in the bitstream. The gob_resync_marker codes may (and should) be byte aligned by
inserting zero to seven zero-valued bits in the bitstream just prior to the gob_resync_marker in order to obtain byte
alignment. The gob_resync_marker shall not be present for the first GOB (for which gob_number = 0).

gob_number: This is a five-bit number which indicates which GOB is being processed in the vop. Its value may
either be read following a gob_resync_marker or may be inferred from the progress of macroblock decoding. All
GOBs shall appear in the bitstream of each video_plane_with_short_header(), and the GOBs shall appear in a
strictly increasing order in the bitstream. In other words, if a gob_number is read from the bitstream after a
gob_resync_marker, its value must be the same as the value that would have been inferred in the absence of the
gob_resync_marker.

gob_frame_id: This is a two bit field which is intended to help determine whether the data following a
gob_resync_marker can be used in cases for which the vop header of the video_plane_with_short_header() may
have been lost. gob_frame_id shall have the same value in every GOB header of a given
video_plane_with_short_header(). Moreover, if any field among the split_screen_indicator or
document_camera_indicator or full_picture_freeze_release or source_format or picture_coding_type as indicated in
the header of a video_plane_with_short_header() is the same as for the previous transmitted picture in the same
video object, gob_frame_id shall have the same value as in that previous video_plane_with_short_header().
However, if any of these fields in the header of a certain video_plane_with_short_header() differs from that in the
previous transmitted video_plane_with_short_header() of the same video object, the value for gob_frame_id in that
picture shall differ from the value in the previous picture.

num_macroblocks_in_gob: This is the number of macroblocks in each group of blocks (GOB) unit. This
parameter is derived from the source_format as shown in Table 6-25. The count of stuffing macroblocks is not
included in this value.

short_video_end_marker: This is a 22-bit end of sequence marker containing the value ‘0000 0000 0000 0000
1111 11’. It is used to mark the end of a sequence of video_plane_with_short_header(). short_video_end_marker
may (and should) be byte aligned by the insertion of zero to seven zero-valued bits to achieve byte alignment prior
to short_video_end_marker.

6.3.5.3 Shape coding

bab_type : This is a variable length code between 1 and 7 bits. It indicates the coding mode used for the bab.
There are seven bab_types as depicted in Table 6-26 . The VLC tables used depend on the decoding context i.e.
the bab_types of blocks already received. For I-VOPs, the context-switched VLC table of Table B-27 is used. For
P-VOPs, B-VOPs, and S(GMC)-VOPs , the context switched table of Table B-28 is used.

Table 6-26 -- List of bab_types and usage

bab_type Semantic Used in

0 MVDs==0 && No Update P,B, and S(GMC)- VOPs
1 MVDs!=0 && No Update P,B, and S(GMC)-VOPs
2 transparent All VOP types
3 opaque All VOP types
4 intraCAE All VOP types
5 MVDs==0 && interCAE P,B, and S(GMC)-VOPs

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

140

6 MVDs!=0 && interCAE P,B, and S(GMC)-VOPs

The bab_type determines what other information fields will be present for the bab shape. No further shape
information is present if the bab_type = 0, 2 or 3. Opaque means that all pixels of the bab are part of the object.
Transparent means that none of the bab pixels belong to the object. IntraCAE means the intra-mode CAE decoding
will be required to reconstruct the pixels of the bab. No_update means that motion compensation is used to copy
the bab from the previous VOP’ s binary alpha map. InterCAE means the motion compensation and inter_mode
CAE decoding are used to reconstruct the bab. MVDs refers to the motion vector difference for shape.

mvds_x: This is a VLC code between 1 and 18 bits. It represents the horizontal element of the motion vector
difference for the bab. The motion vector difference is in full integer precision. The VLC table is shown is Table
B-29 .

mvds_y: This is a VLC code between 1 and 18 bits. It represents the vertical element of the motion vector
difference for the bab. The motion vector difference is in full integer precision. If mvds_x is ‘0’, then the VLC table of
Table B-30 , otherwise the VLC table of Table B-29 is used.

conv_ratio : This is VLC code of length 1-2 bits. It specifies the factor used for sub-sampling the 16x16 pixel bab.
The decoder must up-sample the decoded bab by this factor. The possible values for this factor are 1, 2 and 4 and
the VLC table used is given in Table B-31 .

scan_type : This is a 1-bit flag where a value of ‘0 ’ implies that the bab is in transposed form i.e. the BAB has been
transposed prior to coding. The decoder must then transpose the bab back to its original form following decoding. If
this flag is ‘1’, then no transposition is performed.

binary_arithmetic_code(): This is a binary arithmetic decoder representing the pixel values of the bab. This code
may be generated by intra cae or inter cae depending on the bab_type. Cae decoding relies on the knowledge of
intra_prob[] and inter_prob[], probability tables given in annex B.

enh_bab_type : This is a variable length code between 1 and 3 bits. It indicates the bab coding mode used in
binary shape enhancement layer coding. There are four enh_bab_types as depicted in Table V2 - 3. The VLC
tables used depend on the decoding context i.e. the bab_types of blocks in lower reference layer.

Table V2 - 3 -- List of enh_bab_types and usage

enh_bab_type Semantic Used in

0 intra NOT_CODED P-,B-VOPs
1 intra CODED P-,B-VOPs
2 inter NOT_CODED B- VOPs
3 inter CODED B- VOPs

The enh_bab_type determines what other information fields will be present for the bab shape. No further shape
information is present if the enh_bab_type = 0 or 2. NOT_CODED means that motion compensation is used to
copy the bab from the reference bab’s binary alpha map. In intra NOT_CODED mode, the upsampled bab from the
collocated block in lower reference layer is used for the reference bab. In inter NOT_CODED mode, motion
compensated bab in the previous VOP of the current layer is used for the reference bab. And the motion vector of
the collocated block in the lower reference layer is used for the motion compensation. Each component of the lower
layer shape motion vectors are scaled by the up-sampling ratio according to subclause 7.5.4.5 for referencing in
the enhancement layer. Intra CODED means Scan Interleaving(SI) based CAE decoding will be required to
reconstruct the pixels of the current bab. Inter CODED means the motion compensation and inter_mode CAE
decoding are used to reconstruct the current bab.

enh_binary_arithmetic_code() – This is a binary arithmetic decoder representing the pixel values of the bab and
bab type of Scan Interleaving (SI) method. This code may be generated by SI decoding method or inter cae
depending on the enh_bab_type. When enh_bab_type==1, the first decoded value represents the bab type of SI
decoding method ("0": transitional bab, "1": exceptional bab). And the other decoded values represent the pixel
values of the bab. If the bab type of SI is “transitional bab” , only transitional pixels in the coded-scan-lines are
decoded. Otherwise, for “exceptional bab” , all of the pixels in the coded -scan-lines are decoded. This binary value

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

141

decoding relies on the knowledge of enh_bab_type_prob[], and enh_intra_v_prob[] and
enh_intra_h_prob[]probability tables given in Annex B. When enh_bab_type==3, this binary arithmetic decoder
represents the pixel values of the bab. This code is generated by inter cae. This binary value decoding relies on the
knowledge of inter_prob[], probability tables given in Annex B.

6.3.5.4 Sprite coding

warping_mv_code(dmv) : The codeword for each differential motion vector consists of a VLC indicating the length
of the dmv code (dmv_length) and a FLC, dmv_code-, with dmv_length bits. The codewords are listed in Table
B-33 .

brightness_change_factor (): The codeword for brightness_change_factor consists of a variable
length code denoting brightness_change_factor_size and a fix length code,
brightness_change_factor, of brightness_change_factor_size bits (sign bit included). The
codewords are listed in Table B-34.

send_mb():This function returns 1 if the current macroblock has already been transmitted. Otherwise it returns 0.

piece_quant: This is a 5-bit unsigned interger which indicates the quant to be used for a sprite-piece until updated
by a subsequent dquant. The piece_quant carries the binary representation of quantizer values from 1 to 31 in
steps of 1.

piece_width : This value specifies the width of the sprite piece measured in macroblock units.

piece_height : This value specifies the height of the sprite piece measured in macroblock units.

piece_xoffset: This value specifies the horizontal offset location, measured in macroblock units from the left edge
of the sprite object, for the placement of the sprite piece into the sprite object buffer at the decoder.

piece_yoffset: This value specifies the vertical offset location, measured in macroblock units from the top edge of
the sprite object.

decode_sprite_piece (): It decodes a selected region of the sprite object or its update. It also decodes the
parameters required by the decoder to properly incorporate the pieces. All the static-sprite-object pieces will be
encoded using a subset of the I -VOP syntax. And the static-sprite-update pieces use a subset of the P-VOP
syntax. The sprite update is defined as the difference between the original sprite texture and the reconstructed
sprite assembled from all the sprite object pieces.

sprite_shape_texture(): For the static-sprite-object pieces, shape and texture are coded using the macroblock layer
structure in I-VOPs. And the static-sprite-update pieces use the P-VOP inter-macroblock syntax -- except that
there are no motion vectors and shape information included in this syntax structure. Macroblocks raster scanning is
employed to encode a sprite piece; however, whenever the scan encounters a macroblock which has been part of
some previously sent sprite piece, then the block is not coded and the corresponding macroblock layer is empty.

6.3.6 Macroblock related

not_coded: This is a 1-bit flag which signals if a macroblock is coded or not. When set to’1’ it indicates that a
macroblock is not coded and no further data is included in the bitstream for this macroblock (with the exception of
alpha data that may be present). The decoder shall treat this macroblock as ‘inter’ with motion vector equal to zero
and no DCT coefficient data for P-VOPs, and the decoder shall treat this macroblock as ‘ GMC macroblock (i.e.
prediction using the global motion compensated image)’ with no motion vector data and no DCT coefficient data for
S(GMC)-VOPs. When set to ‘0 ’ it indicates that the macroblock is coded and its data is included in the bitstream.

mcbpc : This is a variable length code that is used to derive the macroblock type and the coded block pattern for
chrominance . It is always included for coded macroblocks. Table B-6 and Table B-7 list all allowed codes for
mcbpc in I-, P-, and S(GMC)- VOPs respectively. The values of the column “ MB type” in these tables are used as
the variable “derived_mb_type” which is used in the respective syntax part for motion and texture decoding. In P-

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

142

vops using the short video header format (i.e., when short_video_header is 1), mcbpc codes indicating macroblock
type 2 shall not be used.

mcsel: This is a 1-bit flag that specifies the reference image of each macroblo ck in S-VOPs. This flag is present
only when sprite_enable == “GMC,” vop_coding_type == “S”, and the macroblock type specified by mcbpc is “ inter”
or “inter+q”. mcsel indicates whether the global motion compensated image or the previous reconstructed VOP is
referred to for interframe prediction. This flag is set to ‘1’ when GMC is used for the macroblock, and is set to ‘0 ’ if
local MC is used. If mcsel = “1”, local motion vectors are not transmitted. The default value for mcsel is ‘1’ (i.e.
prediction using GMC) when sprite_enable == “ GMC,” vop_coding_type == “S”, and not_coded == ‘1’ .

ac_pred_flag: This is a 1-bit flag which when set to ‘1’ indicates that either the first row or the first column of ac
coefficients are differentially coded for intra coded macroblocks.

cbpy: This variable length code represents a pattern of non-transparent luminance blocks with at least one non
intra DC transform coefficient, in a macroblock. Table B-8 –Table B-11 indicate the codes and the corresponding
patterns they indicate for the respective cases of intra - and inter-MBs.

dquant: This is a 2-bit code which specifies the change in the quantizer, quant, for I-, P-, and S(GMC)-VOPs.
Table 6-27 lists the codes and the differential values they represent. The value of quant lies in range of 1 to
2quant_precision-1; if the value of quant after adding dquant value is less than 1 or exceeds 2quant_precision-1, it shall be
correspondingly clipped to 1 and 2quant_precision-1. If quant_precision takes its default value of 5, the range of allowed
values for quant is [1:31].

Table 6-27 -- dquant codes and corresponding values

dquant code value

00 -1

01 -2
10 1
11 2

co_located_not_coded: The value of this internal flag is set to 1 when the current VOP is a B-VOP, the future
reference VOP is a P-VOP, and the co-located macroblock in the future reference VOP is skipped (i.e. coded as
not_coded = '1'). Otherwise the value of this flag is set to 0. The co-located macroblock is the macroblock which
has the same horizontal and vertical index with the current macroblock in the B-VOP. If the co -located macroblock
lies outside of the bounding rectangle, this macroblock is considered to be not skipped.

modb: This is a variable length code present only in coded macroblocks of B-VOPs. It indicates whether mb_type
and/or cbpb information is present for a macroblock. The codes for modb a re listed in Table B-3.

mb_type : This variable length code is present only in coded macroblocks of B-VOPs. Further, it is present only in
those macroblocks for which one motion vector is included. The codes for mb_type are shown in Table B-4 for B-
VOPs for no scalability and in Table B-5 for B-VOPs with scalability. When mb_type is not present (i.e. modb==‘1’)
for a macroblock in a B-VOP, the ma croblock type is set to the default type. The default macroblock type for the
enhancement layer of spatially scalable bitstreams (i.e. ref_select_code == '00' && scalability = '1') is "forward mc +
Q". Otherwise, the default macroblock type is "direct".

cbpb: This is a 3 to 6 bit code representing coded block pattern in B-VOPs, if indicated by modb. Each bit in the
code represents a coded/no coded status of a block; the leftmost bit corresponds to the top left block in the
macroblock. For each non-transparent blocks with coefficients, the corresponding bit in the code is set to ‘1’. When
cbpb is not present (i.e. modb==‘1’ or ‘01’) for a macroblock in a B-VOP, no coefficients are coded for all the non -
transparent blocks in this macroblock.

dbquant: This is a variable length code which specifies the change in quantizer for B-VOPs. Table 6-28 lists the
codes and the differential values they represent. If the value of quant after adding dbquant value is less than 1 or
exceeds 2quant_precision-1, it shall be correspondingly clipped to 1 and 2quant_precision-1. If quant_precision takes its
default value of 5, the range of allowed values for the quantzer for B-VOPs is [1:31].

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

143

Table 6-28 -- dbquant codes and corresponding values

dbquant code value

10 -2
0 0

11 2

coda_i: This is a one -bit flag which is set to “ 1” to indicate that all the values in the grayscale alpha macroblock are
equal to 255 (AlphaOpaqueValue). When set to “0 ”, this flag indicates that one or more 8x8 blocks are coded
according to cbpa.

ac_pred_flag_alpha : This is a one-bit flag which when set to ‘1 ’ indicates that either the first row or the first
column of ac coefficients are to be differentially decoded for intra alpha macroblocks. It has the same effect for
alpha as the corresponding luminance flag.

cbpa: This is the coded block pattern for grayscale alpha texture data. For I, P , S(GMC), and B VOPs, this VLC is
exactly the same as the INTER (P or S(GMC)) cbpy VLC described in Table B-8 − Table B-11. cbpa is followed by
the alpha block data which is coded in the same way as texture block data. Note that grayscale alpha blocks with
alpha all equal to zero (transparent) are not included in the bitstream.

coda_pb: This is a VLC indicating the coding status for P, S(GMC), or B alpha macroblocks. The semantics are
given in the table below (Table 6-29). When this VLC indicates that the alpha macroblock is all opaque, this means
that all values are set to 255 (AlphaOpaqueValue).

Table 6-29 -- coda_pb codes and corresponding values

coda_pb Meaning

1 alpha residue all zero
01 alpha macroblock all opaque
00 alpha residue coded

6.3.6.1 MB Binary Shape Coding

bab_type : This defines the coding type of the current bab according to Table B-27 and Table B-28 for intra and
inter mode, respectively.

mvds_x: This defines the size of the x-component of the differential motion vector for the current bab according to
Table B-29.

mvds_y: This defines the size of the y-component of the differential motion vector for the current bab according to
Table B-29 if mvds_x!=0 and according to Table B-30 if mvds_x==0.

conv_ratio : This defines the upsampling factor according to Table B-31 to be applied after decoding the current
shape information

scan_type : This defines according to Table 6-30 whether the current bordered to be decoded bab and the
eventual bordered motion compensated bab need to be transposed

Table 6-30 -- scan_type

scan_type meaning

0 transpose bab as in matrix transpose

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

144

1 do not transpose

binary_arithmetic_code() –This is a binary arithmetic decoder that defines the context dependent arithmetically to
be decoded binary shape information. The meaning of the bits is defined by the arithmetic decoder according to
subclause 7.5 .3

enh_bab_type -- This defines the coding type of the current bab in the enhancement layer according to Table V2 -
30 and Table V2 - 31 for P-VOP and B-VOP coding, respectively.

enh_binary_arithmetic_code() -- This is a binary arithmetic decoder that defines the context dependent
arithmetically to be decoded binary shape information in the enhancement layer. The meaning of the bits is defined
by the arithmetic decoder according to subclause 7.5.3.

6.3.6.2 Motion vector

horizontal_mv_data : This is a variable length code, as defined in Table B-12 , which is used in motion vector
decoding as described in subclause 7.6.3.

vertical_mv_data : This is a variable length code, as defined in Table B-12, which is used in motion vector
decoding as described in subclause 7.6.3.

horizontal_mv_residual : This is an unsigned integer which is used in motion vector decoding as described in
subclause 7.6.3 . The number of bits in the bitstream for horizontal_mv_residual, r_size, is derived from either
vop_fcode_forward or vop_fcode_backward as follows;

r_size = vop_fcode_forward - 1 or r_size = vop_fcode_backward - 1

vertical_mv_residual: This is an unsigned integer which is used in motion vector decoding as described in
subclause 7.6.3. The number of bits in the bitstream for vertical_mv_residual, r_size, is derived from either
vop_fcode_forward or vop_fcode_backward as follows;

r_size = vop_fcode_forward - 1 or r_size = vop_fcode_backwa rd - 1

6.3.6.3 Interlaced Information

dct_type : This is a 1-bit flag indicating whether the macroblock is frame DCT coded or field DCT coded. If this
flag is set to “1”, the macroblock is field DCT coded; otherwise, the macroblock is frame DCT coded. This flag is
only present in the bitstream if the interlaced flag is set to “1 ” and the macroblock is coded (coded blcok pattern is
non-zero) or intra-coded. Boundary blocks are always coded in frame -based mode.

field_prediction: This is a 1-bit flag indicating whether the macroblock is field predicted or frame predicted. This
flag is set to ‘1’ when the macroblock is predicted using field motion vectors. If it is set to ‘0 ’ then frame prediction
(16x16 or 8x8) will be used. This flag is only present when interlaced == ‘1’ for the following types of macrloblocks:
a macroblock in a P-VOP with derived_mb_type < 2; a non-direct mode macrloblock in a B-VOP; or a macroblocks
in an S (GMC)-VOP with mcsel == ‘0’ .

forward_top_field_reference: This is a 1-bit flag which indicates the reference field for the forward motion
compensation of the top field. When this flag is set to ‘0’, the top field is used as the reference field. If it is set to ‘1’
then the bottom field will be used as the reference field. This flag is only present in the bitstream if the
field_prediction flag is set to “1” and the macroblock is not backward predicted.

forward_bottom_field_reference: This is a 1-bit flag which indicates the reference field for the forward motion
compensation of the bottom field. When this flag is set to ‘0 ’, the top field is used as the reference field. If it is set to
‘1 ’ then the bottom field will be used as the reference field. This flag is only present in the bitstream if the
field_prediction flag is set to “1” and the macroblock is not backward predicted.

backward_top_field_reference : This is a 1-bit flag which indicates the reference field for the backward motion
compensation of the top field. When this flag is set to ‘0’, the top field is used as the reference field. If it is set to ‘1’

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

145

then the bottom field will be used as the reference field. This flag is only present in the bitstream if the
field_prediction flag is set to “1” and the macroblock is not forward predicted.

backward_bottom_field_reference : This is a 1-bit flag which indicates the reference field for the backward
motion compensation of the bottom field. When this flag is set to ‘0 ’, the top field is used as the reference field. If it
is set to ‘1 ’ then the bottom field will be used as the reference field.. This flag is only present in the bitstream if the
field_prediction flag is set to “1” and the macroblock is not forward predicted.

6.3.7 Block related

intra_dc_coefficient: This is a fixed length code that defines the value of an intra DC coefficient when the short
video header format is in use (i.e., when short_video_header is “1 ”). It is transmitted as a fixed length unsigned
integer code of size 8 bits, unless this integer has the value 255. The values 0 and 128 shall not be used – they
are reserved. If the integer value is 255, this is interpreted as a signalled value of 128. The integer value is then
multiplied by a dc_scaler value of 8 to produce the reconstructed intra DC coefficient value.

dct_dc_size_luminance : This is a variable length code as defin ed in Table B-13 that is used to derive the value of
the differential dc coefficients of luminance values in blocks in intra macroblocks. This value categorizes the
coefficients according to their size.

dct_dc_differential: This is a variable length code as defined in Table B-15 that is used to derive the value of the
differential dc coefficients in blocks in intra macroblocks. After identifying the category of the dc coefficient in size
from dct_dc_size_luminance or dct_dc_size_chrominance, this value denotes which actual difference in that
category occurred.

dct_dc_size_chrominance: This is a variable length code as defined in Table B-14 that is used to derive the
value of the differential dc coefficients of chrominance values in blocks in intra macroblocks. This value categorizes
the coefficients according to their size.

pattern_code[i]: The value of this internal flag is set to 1 if the block or alpha block with the index value i includes
one or more DCT coefficients that are decoded using at least one of Table B-16 to Table B-25. Otherwise the value
of this flag is set to 0.

6.3.7.1 Alpha block related

dct_dc_size_alpha: This is a variable length code for coding the alpha block dc coefficient. Its semantics are the
same as dct_dc_size_luminance in subclause 6.3.7.

6.3.8 Still texture object

still_texture_object_start_code : The still_texture_object_start_code is a string of 32 bits. The first 24 bits are
‘0000 0000 0000 0000 0000 0001’ and the last 8 bits are defined in Table 6-3.

texture_tile_start_code: The texture_tile_start_code is a string of 32 bits. The 32 bits are ‘0000 0000 0000 0000
0000 0001 1100 0001’ in binary. The texture_tile_start code marks the start of a new tile.

tiling_disable : This field indicates the succeeding bitstream contains a structure of tile when the field is ‘0 ’.

tile_width : This is a 15-bit unsigned integer which specifies horizontal size, in pexel unit, of the rectangle. When
texture_object_layer_shape==’ 00’ , this value must be lower than texture_object_layer_width and a zero value is
forbidden. When texture_object_layer_width is not a multilple of tile_width, the horizontal size of tile in the last
column is derived by texture_object_layer_width%tile_width. When texture_object_layer_shape==’01’, object_width
is used instead o f texture_object_layer_width. The value of tile_width shall be divisible by two.

tile_height: This is a 15-bit unsigned integer which specifies vertical size, in pexel unit, of the rectangle. When
texture_object_layer_shape==’ 00’ , this value must be lower than texture_object_layer_height and a zero value is
forbidden. When texture_object_layer_height is not a multilple of tile_height, the vertical size of tile in the last row is

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

146

derived by texture_object_layer_height%tile_height. When texture_object_layer_shape== ’01’, object_height is used
instead of texture_object_layer_height. The value of tile_height shall be divisible by two.

number_of_tiles: This is a 16-bit of unsigned integer specifying the number of tiles encoded in this bitstream.
When texture_object_layer_shape==’00’, the value is derived from CEIL(texture_object_layer_width÷ tile_width) *
CEIL(texture_object_layer_height÷ tile_height), where CEIL() rounds up to the nearest integer. When
texture_object_layer_shape==’ 01’ , the value is derived from CEIL(object_width÷ tile_width) *
CEIL(object_height÷ tile_height).

tiling_jump_table_enable : This field indicates the succeeding bitstream contains a size of bitstream for each tile
when the field is ‘1’.

tile_size_high: This is a left part of 16-bit of a unsign ed integer in 32-bit which indicates a size of bitstream
containing the corresponding tile in byte unit.

tile_size_low: This is a right part of 16-bit of a unsigned integer in 32 -bit which indicates a size of bitstream
containing the corresponding tile in byte unit. The real size of bitstream for a certain tile is derived from
‘tile_size_high<<16+tile_size_low’.

tile_id : This is given by 16-bits representing one of the values in the range of ‘ 0000’ to ‘FFFF’ in hexadecimal
starting from top -left ended to bottom-right. The field uniquely identifies each tile.

texture_error_resilience_disable: This is a one-bit flag which when set to ‘0‘ indicates that the Still Texture Object
is operating in error resilience mode.

target_segment_length: This parameter specifi es the minimum number of bits in a segment within a packet
before adding a segment marker.

decode_segment_marker(): This function will decode the arithmetically encoded segment marker. The arithmetic
model used is the initial model used in decoding type information for the color in which the segment marker is.
When in error free case, a ZTR symbol will be decoded as the segment marker.

texture_object_id : This is given by 16-bits representing one of the values in the range of ‘ 0000 0000 0000 0000’
to ‘1111 1111 1111 1111’ in binary. The texture_object_id uniquely identifies a texture object layer.

wavelet_filter_type: This field indicates the arithmetic precision which is used for the wavelet decomposition as
the following:

Table 6-31 -- Wavelet type

wavelet_filter_type Meaning

0 integer

1 Double float

wavelet_download: This field indicates if the 2-band filter bank is specificed in the bitstream:

Table 6-32 -- Wavelet downloading flag

wavelet_download meaning

0 default filters
1 specified in bitstream

The default filter banks are described in subclause B.2.2.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

147

wavelet_decomposition_levels: This field indicates the number of levels in the wavelet decomposition of the
texture.

scan_direction: This field indicates the scan order of AC coefficients. In single-quant and multi -quant mode, if this
flag is `0’, then the coefficients are scanned in the tree -depth fashion. If it is `1’, then they are scanned in the
subband by subband fashion. In bilevel_quant mode, if the flag is `0’, then they are scanned in bitplane by bitplane
fashion. Within each bitplane, they are scanned in a subband by subband fashion. If it is “1”, they are scanned from
the low wavelet decomposition layer to high wavelet decomposition layer. Within each wavelet decomposition layer,
they are scanned from most significant bitplane down to the least significant bitplane.

start_code_enable: If this flag is enabled (disable =0; enabled = 1), the start code followed by an ID to be
inserted in to each spatial scalability layer and/or each SNR scalability layer.

texture_object_layer_shape: This is a 2-bit integer defined in Table 6-33. It identifies the shape type of a texture
object layer.

Table 6-33 -- Texture Object Layer Shape type

texture_object_layer_shape Meaning

00 rectangular
01 binary
10 reserved
11 reserved

quantisation_type: This field indicates the type of quantisation as shown in Table 6-34 .

Table 6-34 -- The quantisation type

quantisation_type Code

 single quantizer 01
 multi quantizer 10
bi-level quantizer 11

spatial_scalability_levels: This field indicates the number of spatial scalability layers supported in the bitstream.
This number can be from 1 to wavelet_decomposition_levels.

use_default_spatial_scalability: This fi eld indicates how the spatial scalability levels are formed. If its value is
one, then default spatial scalability is used, starting from (¼)^(spatial_scalability_levels-1)-th of the full resolution up
to the full resolution, where ^ is a power operation. If its value is zero, the spatial scalability is specified by
wavelet_layer_index described below.

wavelet_layer_index : This field indicates the identification number of wavelet_decomposition layer used for
spatial scalability. The index starts with 0 (i.e., root_band) and ends at (wavelet_decomposition_levels–1) (i.e., full
resolution).

uniform_wavelet_filter: If this field is “1” , then the same wavelet filter is applied for all wavelet layers. If this field
is “0”, then different wavelet filters may be applied for the wavelet decomposition. Note that the same filters are
used for both luminance and chromanence. Since the chromanence’ s width and height is half that of the luminance,
the last wavelet filter applied to the luminance is skipped when the chromanence is synthesized.

wavelet_stuffing: These 3 stuffing bits are reserved for future expansion. It is currently defined to be ‘111’.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

148

texture_object_layer_width: The texture_object_layer_width is a 15-bit unsigned integer representing the width
of the displayable part of the luminance component in pixel units. A zero value is forbidden.

texture_object_layer_height: The texture_object_layer_height is a 15-bit unsigned integer representing the
height of the displayable part of the luminance component in pixel units. A zero value is forbidden.

horizontal_ref: This is a 15-bit integer which specifies, in pixel units, the horizontal position of the top left of the
rectangle defined by horizontal size of object_width. The value of horizontal_ref shall be divisible by two. This is
used for decoding and for picture composition.

vertical_ref: This is a 15-bit integer which specifies, in pixel units, the vertical position of the top left of the
rectangle defined by vertical size of object_height. The value of vertical_ref shall be divisible by two. This is used
for decoding and for picture composition.

object_width : This is a 15-bit unsigned integer which specifies the horizontal size, in pixel units, of the rectangle
that includes the object. A zero value is forbidden.

object_height: This is a 15-bit unsigned integer which specifies the vertical size, in pixel units, of the rectangle
that includes the object. A zero value is forbidden.

quant_byte : This field defines one byte of the quantisation step size for each scalability layer. A zero value is
forbidden. The quantisation step size parameter, quant, is decoded using the function get_param(): quant =
get_param(7);

max_bitplanes: This field indicates the number of maximum bitplanes in all three quantization modes.

texture_tile_type : This is a 2-bit integer defined in Table V2 - 4. It identifies the shape type of a texture object in a
tile when texture_object_layer_shape is “ 01”.

Table V2 - 4 -- Texture Tile Shape

texture_tile_type Meaning

00 Forbiden
01 opaque tile
10 Boundary tile
11 Transparent tile

next_texture_marker ():This function performs a similar operation as next_start_code(), but for texture_marker.

texture_marker – This is a binary string of at least 16 zero’ s followed by a one ‘0 0000 0000 0000 0001’. It is only
present when texture_error_resilience_disable flag is set to ‘0’ . A texture marker shall only be located immediately
before a texture packet and aligned with a byte.

TU_first – This parameter specifies the number of the first texture unit within the texture packet. This parameter is
decoded by the function get_param().

TU_last – This parameter specifies the number of the last texture unit within the texture packet. This parameter is
decoded by the function get_param().

header_extention_code – This is a one-bit flag which when set to ‘1‘ indicates that additional header information
is sent in the texture packet. This bit must have value 1 in the first packet of a texture object.

target_segment_length – This parameter specifies the minimum number of bits in a segment within a packet
before adding a segment marker.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

149

6.3.8.1 Texture Layer Decoding

arith_decode_highbands_td(): This is an arithmetic decoder for decoding the quantized coefficient values of the
higher bands (all bands except DC band) within a single tree block. The bitstream is generated by an adaptive
arithmetic encoder. The arithmetic decoding relies on the initialization of the uniform probability distribution models
described in subclause B.2.2. This decoder uses only integer arithmetic. It also uses an adaptive probability model
based on the frequency counts of the previously decoded symbols. The maximum range (or precision) specified is
(2^16) - 1 (16 bits). The maximum frequency count for the magnitude and residual models is 127, and for all other
models it is 127. The arithmetic coder used is identical to the one used in arith_decode_highbands_bilevel_td().

texture_spatial_layer_start_code: The texture_spatial_layer_start_code is a string of 32 bits. The 32 bits are
‘0000 0000 0000 0000 0000 0001 1011 1111’ in binary. The texture_spatial_layer_start_code marks the start of a
new spatial layer.

texture_spatial_layer_id: This is given by 5-bits representing one of the values in the range of ‘00000’ to ‘11111’
in binary. The texture_spatial_layer_id uniquely identifies a spatial layer.

arith_decode_highbands_bb(): This is an arithmetic decoder for decoding the quantized coefficient values of the
higher bands (all bands except DC band) within a single band. The bitstream is generated by an adaptive
arithmetic encoder. The arithmetic decoding relies on the initialization of the uniform probability distribution models
described in subclause B.2.2. This decoder uses arithmetic. It also uses an adaptive probability model based on
the frequency counts of the previously decoded symbols. The maximum range (or precision) specified is (2^16) - 1
(16 bits). The maximum frequency count for the magnitude and residual models is 127, and for all other models it is
127.

snr_scalability_levels: This field indicates the number of levels of SNR scalability supported in this spatial
scalability level.

texture_snr_layer_start_code : The texture_snr_layer_start_code is a string of 32 bits. The 32 bits are ‘0000
0000 0000 0000 0000 0001 1100 0000’ in binary. The texture_snr_layer_start_code marks the start of a new snr
layer.

texture_snr_layer_id: This is given by 5-bits representing one of the values in the range of ‘00000’ to ‘11111’ in
binary. The texture_snr_layer_id uniquely identifies an SNR layer.

NOTE All the start codes start at the byte boundary. Appropriate number of bits is stuffed before any start code to
byte-align the bitstream.

all_nonzero: This flag indicates whether some of the subbands of the current layer contain only zero coefficients.
The value ‘0’ for this flag indicates that one or more of the subbands contain only zero coefficients. The value ‘ 1’ for
this flag indicates the all the subbands contain some nonzero coefficients

all_zero: This flag indicates whether all the coefficients in the current layer are zero or not. The value ‘0 ’ for this
flag indicates that the layer contains some nonzero coefficients. The value ‘1 ’ for this flag indicates that the layer
only contains zero coefficients, and therefore the layer is skipped.

lh_zero, hl_zero, hh_zero : This flag indicates whether the LH/HL/HH subband of the current layer contains only
all zero coefficients. The value ‘1’ for this flag indicates that the LH/HL/HH subband contains only zero coefficients,
and therefore the subband is skipped. The value ‘0’ for this flag indicates that the LH/HL/HH subband contains
some nonzero coefficients

arith_decode_highbands_bilevel_bb(): This is an arithmetic decoder for decoding the quantized coefficient
values of the higher bands in the bilevel_quant mode (all bands except DC band). The bitstream is generated by an
adaptive arithmetic encoder. The arithmetic decoding relies on the initialization of the uniform probability distribution
models described. The arith_decode_highbands_bilevel() function uses bitplane scanning, and a different
probability model as described in subclause B.2.2. In this mode, The maximum range (or precision) specified is
(2^16) - 1 (16 bits). The maximum frequency count is 127. It uses the lh/hl/hh_zero flags to see if any of the
LH/HL/HH are all zero thus not decoded . For example if lh_zero=1 and hh_zero=1 only hl_zero is decoded.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

150

arith_decode_highbands_bilevel_td(): This is an arithmetic decoder for decoding the quantized coefficient
values of the higher bands in the bilevel_quant mode (all bands except DC band). The bitstream is generated by an
adaptive arithmetic encoder. The arithmetic decoding relies on the initialization of the uniform probability distribution
models described. The arith_decode_highbands_bilevel() function uses bitplane scanning, and a different
probability model as described in subclause B.2.2. In this mode, The maximum range (or precision) specified is
(2^16) - 1 (16 bits). The maximum frequency count is 127. It uses the lh/hl/ll_zero flags to see if any of the
LH/HL/HH are all zero thus not decoded. For example if lh_zero=1 and hh_zero=1 only hl_zero is decoded.

lowpass_filter_length: This field defines the length of the low pass filter in binary ranging from “0001” (length of 1)
to “ 1111” (length of 15.)

highpass_filter_length: This field defines the length of the high pass filter in binary ranging from “0001” (length of
1) to “ 1111” (length of 15.)

filter_tap_integer: This field defines an integer filter coefficient in a 16 bit signed integer. The filter coefficients are
decoded from the left most tap to the right most tap order.

filter_tap_float_high: This field defines the left 16 bits of a floating filter coefficient which is defined in 32-bit IEEE
floating format. The filter coefficients are decoded from the left most tap to the right most tap order.

filter_tap_float_low: This field defines the right 16 bits of a floating filter coefficient which is defined in 32 -bit IEEE
floating format. The filter coefficients are decoded from the left most tap to the right most tap order.

integer_scale: This field defines the scaling factor of the integer wavelet, by which the output of each composition
level is divided by an integer division operation. A zero value is forbidden.

mean: This field indicates the mean value of one color component of the texture.

quant_dc_byte : This field indicates the quantization step size for one color component of the DC subband. A zero
value is forbidden. The quantization step size parameter, quant_dc, is decoded using the function get_param():
quant_dc = get_param(7); where get_param() function is defined in the description of band_offset_byte.

band_offset_byte: This field defines one byte of the absolute value of the parameter band_offset. This parameter
is added to each DC band coefficient obtained by arithmetic decoding. The parameter band_offset is decoded
using the function get_param():

band_offset = -get_param(7);

where function get_param() is defined as

int get_param(int nbit)
{
int count = 0;
int word =0;

int value = 0;
int module = 1<<(nbit);

do{
word= get_next_word_from_bitstream(nbit+1);
value += (word & (module-1)) << (count * nbit);
count ++;

} while(word>> nbit);
return value;

}

The function get_next_word_from_bitstream(x) reads the next x bits from the input bitstream.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

151

band_max_byte: This field defines one byte of the maximum value of the DC band. The parameter
band_max_value is decoded using function get_param(). The number of maximum bitplanes for DC band is
derived from CEIL(log2(band_max_value+1))

band_max_value = get_param(7);

arith_decode_dc(): This is an arithmetic decoder for decoding the quantized coefficient values of DC band only.
No zerotree symbol is decoded since the VAL is assumed for all DC coefficient values. This bitstream is generated
by an adaptive arithmetic encoder. The arithmetic decoding relies on the initialization of a uniform probability
distribution model described in subclause B.2.2. The arith_decode_dc() function uses the same arithmetic decoder
as described in arith_decode_highbands_td() but it uses different scanning, and a different probability model (DC).

6.3.8.2 Shape Object decoding

change_conv_ratio_disable: This specifies whether conv_ratio is encoded at the shape object decoding function.
If it is set to “1” when disable.

sto_constant_alpha : This is a 1-bit flag when set to ‘1 ’, the opaque alpha values of the binary mask are replaced
with the alpha value specified by sto_constant_alpha_value.

sto_constant_alpha_value : This is an 8-bit code that gives the alpha value to replace the opaque pixels in the
binary alpha mask. Value ‘0’ is forbidden.

marker_bit: This is one-bit that shall be set to 1. This bit prevents emulation of start codes.

sto_shape_coded_layers: This is a 4-bit unsigned integer to indicate the number of enhancement layers to
contained in the bitstream.

texture_shape_layer_start_code: This is a string of 32 bits. The first 24 bits are ‘0000 0000 0000 0000 0000
0001’ and the last 8 bits ‘1100 0010 ’ (0xC2). This texture_shape_layer_start_code marks the start of a new shape
enhancement layer.

texture_shape_layer_id: This is given by a 5-bit number representing one of the values in the range of ‘00000’ to
‘11111’ in bina ry. The texture_shape_layer_id uniquely identifies a shape spatial layer.

texture_spatial_layer_start_code: This is a string of 32 bits. The first 24 bits are ‘0000 0000 0000 0000 0000
0001’ and the last 8 bits ‘1011 1111’ (0xBF). This texture_spatial_layer_start_code marks the start of texture
decoding.

texture_spatial_layer_id: This is given by a 5-bit number representing one of the values in the range of ‘00000’ to
‘11111’ in binary. This texture_spatial_layer_id uniquely identifies the start of texture decoding.

shape_base_layer_height_blocks(): This is a function that returns the number of shape blocks in vertical directions
in the base layer. In the case that tiling_disable is ‘1 ’ object_height will be used for the number. The number is
given by ((object_height>>wavelet_decomposition_levels)+15)/16.

If tiling_disable is ‘0 ’ tiling_height will be used instead of object_height. The number is given by
((tile_height>>wavelet_decomposition_levels) +15)/16.

shape_base_layer_width_blocks(): This is a function that returns the number of shape blocks in horizontal
directions in the base layer. In the case that tiling_disable is ‘1 ’ object_width will be used for the number. The
number is given by ((object_width>>wavelet_decomposition_levels) +15)/16.

If tiling_disable is ‘0’ tiling_width will be used instead of object_width. The number is given by
((tile_width>>wavelet_decomposition_levels) +15)/16.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

152

bab_type : This is a variable length code of 1-2 bits. It indicates the coding mode used for the bab. There are three
bab_types as depicted in Table 6-35. The VLC tables used depend on the decoding context i.e. the bab_types of
blocks already received.

Table 6-35 -- List of bab_types and usage

bab_type Semantic code

2 transparent 10
3 opaque 0
4 intraCAE 11

The bab_type determines what other information fields will be present for the bab shape. No further shape
information is present if the bab_type = 2 or 3. opaque means that all pixels of the bab are part of the object.
transparent means that none of the bab pixels belong to the object. IntraCAE means the intra -mode CAE decoding
will be required to reconstruct the pixels of the bab.

conv_ratio : This is VLC code of length 1-2 bits. It specifies the factor used for sub-sampling the 16x16 pixel bab.
The decoder must up-sample the decoded bab by this factor. The possible values for this factor are 1, 2 and 4 and
the VLC table used is given in Table B-31 .

scan_type : This is a 1-bit flag where a value of ‘0’ implies that the bab is in transposed form i.e. the bab has been
transposed prior to coding. The decoder must then transpose the bab back to its original form following decoding. If
this flag i s ‘1’, then no transposition is performed.

binary_arithmetic_decode(): This is a binary arithmetic decoder representing the pixel values of the bab. Cae
decoding relies on the knowledge of intra_prob[], probability tables given in annex B.

shape_enhanced_layer_height_blocks(): This is a function that returns the number of shape blocks in vertical
directions in the enhancement layer. In the case that tiling_disable is ‘1’, object_height will be used for the number.
If the current coding layer is the L -th layer in the bitstream, the number of blocks is given by

((object_height>>(wavelet_decomposition_levels–L–1))+bab_size–1)/bab_size.

If tiling_disable is ‘0 ’ tiling_height will be used instead of object_height. If the current coding layer is the L-th layer in
the bitstream, the number of blocks is given by

((tile_height>>(wavelet_decomposition_levels–L–1))+bab_size –1)/bab_size.

The value of bab_size (size of the coded bab) is defined in subclause 7.10.6.2.1.

shape_enhanced_layer_width_blocks(): This is a function that returns the number of shape blocks in horizontal
directions in the enhancement layer. In the case that tiling_disable is ‘1 ’, object_width will be used for the number. If
the current coding layer is the L-th layer in the bitstream, the number of blocks is given by

((object_width>>(wavelet_decomposition_levels–L–1))+bab_size–1)/bab_size.

If tiling_disable is ‘0’ tiling_width will be used instead of object_width. If the current coding layer is the L-th layer in
the bitstream, the number of blocks is given by

((tile_width>>(wavelet_decomposition_levels–L–1))+bab_size –1)/bab_size.

enh_binary_arithmetic_decode(): The first decoded value denotes BAB type of Scan Interleaving (SI) method
(SI_bab_type : "0": transitional BAB, "1": exceptional BAB). And the other decoded values represent the pixel
values of the current BAB. If the BAB is a transitional BAB, only transitional pixels are decoded. Otherwise all of the
pixels are decoded. This binary value decoding relies on the knowledge of SI_bab_type_prob[], enh_intra_v_prob[]
and enh_intra_h_prob[], sto_SI_bab_type_prob_even[], sto_enh_odd_prob0[], sto_enh_even_prob0[],
sto_enh_odd_prob1[], and sto_enh_even_prob1[] probability tables given in Annex B.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

153

6.3.9 Mesh object

mesh_object_start_code : The mesh_object_start_code is the bit string ‘000001BC’ in hexadecimal. It initiates a
mesh object.

6.3.9.1 Mesh object plane

mesh_object_plane_start_code: The mesh_object_plane_start_code is the bit string ‘000001BD’ in hexadecimal.
It initiates a mesh object plane.

is_intra : This is a 1-bit flag which when set to ‘1’ indicates that the mesh object is coded in intra mode. When set
to ‘0’ it indicates that the mesh object is coded in predictive mode.

6.3.9.2 Mesh ge ometry

mesh_type_code: This is a 2-bit integer defined in Table 6-36. It indicates the type of initial mesh geometry to be
decoded.

Table 6-36 -- Mesh type code

mesh type code mesh geometry

00 forbidden

01 uniform
10 Delaunay
11 reserved

nr_of_mesh_nodes_hor: This is a 10-bit unsigned integer specifying the number of nodes in one row of a uniform
mesh.

nr_of_mesh_nodes_vert: This is a 10-bit unsigned integer speci fying the number of nodes in one column of a
uniform mesh.

mesh_rect_size_hor: This is a 8-bit unsigned integer specifying the width of a rectangle of a uniform mesh
(containing two triangles) in half pixel units.

mesh_rect_size_vert: This is a 8-bit unsigned integer specifying the height of a rectangle of a uniform mesh
(containing two triangles) in half pixel units.

triangle_split_code: This is a 2-bit integer defined in Table 6-37 . It specifies how rectangles of a uniform mesh
are split to form triangles.

Table 6-37 -- Specification of the triangulation type

triangle split code Split

00 top-left to right bottom
01 bottom-left to top right

10 alternately top-left to bottom-right and bottom-left to top-right
11 alternately bottom-left to top-right and top -left to bottom-right

nr_of_mesh_nodes: This is a 16-bit unsigned integer defining the total number of nodes (vertices) of a (non -
uniform) Delaunay mesh. These nodes include both interior nodes as well as boundary nodes.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

154

nr_of_boundary_nodes : This is a 10-bit unsigned integer defining the number of nodes (vertices) on the
boundary of a (non-uniform) Delaunay mesh.

node0_x : This is a 13-bit signed integer specifying the x-coordinate of the first boundary node (vertex) of a mesh
in half-pixel units with respect to a local coordinate system.

node0_y: This is a 13-bit signed integer specifying the y-coordinate of the first boundary node (vertex) of a mesh
in half-pixel units with respect to a local coordinate system.

delta_x_len_vlc: This is a variable-length code specifying the length of the delta_x code that follows. The
delta_x_len_vlc and delta_x codes together specify the difference between the x-coordinates of a node (vertex) and
the previously encoded node (vertex). The definition of the delta_x_len_vlc and delta_x codes are given in Table
B-33 , the table for sprite motion trajectory coding.

delta_x: This is an integer that defines the value of the difference between the x-coordinates of a node (vertex)
and the previously encoded node (vertex) in half pixel units. The number of bits in the bitstream for delta_x is
delta_x_len_vlc.

delta_y_len_vlc: This is a variable-length code specifying the length of the delta_y code that follows. The
delta_y_len_vlc and delta_y codes together specify the difference between the y-coordinates of a node (vertex) and
the previously encoded node (vertex). The definition of the delta_y_len_vlc and delta_y codes are given in Table
B-33 , the table for sprite motion trajectory coding.

delta_y: This is an integer that defines the value of the difference between the y-coordinates of a node (vertex)
and the previously encoded node (vertex) in half pixel units. The number of bits in the bitstream for delta_y is
delta_y_len_vlc.

6.3.9.3 Mesh motion

motion_range_code: This is a 3-bit integer defined in Table 6-38. It specifies the dynamic range of motion vectors
in half pel units.

Table 6-38 -- motion range code

motion range code motion vector range

1 [-32, 31]
2 [-64, 63]
3 [-128, 127]
4 [-256, 255]
5 [-512, 511]

6 [-1024, 1023]
7 [-2048, 2047]

node_motion_vector_flag: This is a 1 bit code specifying whether a node has a zero motion vector. When set to
‘1 ’ it indicates that a node has a zero motion vector, in which case the motion vector is not encoded. When set to ‘0’,
it indicates the node has a nonzero motion vector and that motion vector data shall follow.

delta_mv_x_vlc: This is a variable -length code defining (together with delta_mv_x_res) the value of the difference
in the x-component of the motion vector of a node compared to the x-component of a predicting motion vector. The
definition of the delta_mv_x_vlc codes are given in Table B-12, the table for motion vector coding (MVD). The value
delta_mv_x_vlc is given in half pixel units.

delta_mv_x_res : This is an integer which is used in mesh node motion vector decoding using an algorithm
equivalent to that described in the section on video motion vector decoding, subclause 7.6.3. The number of b its in
the bitstream for delta_mv_x_res is motion_range_code-1 .

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

155

delta_mv_y_vlc: This is a variable -length code defining (together with delta_mv_y_res) the value of the difference
in the y-component of the motion vector of a node compared to the y-componen t of a predicting motion vector. The
definition of the delta_mv_y_vlc codes are given in Table B-12, the table for motion vector coding (MVD). The value
delta_mv_y_vlc is given in half pixel units.

delta_mv_y_res : This is an integer which is used in mesh node motion vector decoding using an algorithm
equivalent to that described in the section on video motion vector decoding, subclause 7.6.3 . The number of bits in
the bitstream for delta_mv_y_res is motion_range_code-1.

6.3.10 FBA object

fba_object_start_code: The fba_object_start_code is the bit string ‘000001BA’ in hexadecimal. It initiates a FBA
object.

6.3.10.1 FBA object plane header

fba_object_plane_start_code : The fba _frame_start_code is the bit string ‘000001BB’ in hexadecimal. It initiates
a FBA object plane.

is_intra : This is a 1-bit flag which when set to ‘1’ indicates that the FBA object is coded in intra mode. When set to
‘0’ it indicates that the FBA object is coded in predictive mode.

fba_object_mask: This is a 2-bit integer defined in Table 6-40. It indicates whether FBA and BAP data are
present in the FBA_frame.

Table 6-40 – FBA object mask

mask value Meaning

00 unused

01 FAP present
10 BAP present
11 both FAP and BAP present

6.3.10.2 FBA object plane data

fap_quant: This is a 5-bit unsigned integer which is the quantization scale factor used to compute the FAPi table
step size or DCT fap_scale depending on the fba_object_coding_type. If the fba_object_coding_type is DCT this is
a 5-bit unsigned integer used as the index to a fap_scale table for computing the quantization step size of DCT
coefficients. The value of fap_scale is specified in the following list:

fap_scale[0 - 31] = { 1, 1, 2, 3, 5, 7, 8, 10, 12, 15, 18, 21, 25, 30, 35, 42,

 50, 60, 72, 87, 105, 128, 156, 191, 234, 288, 355, 439, 543, 674, 836, 1039}

fap_mask_type : This is a 2-bit integer. It indicates if the group mask will be present for the specified fap group, or
if the complete faps will be present; its meaning is described in Table 6-42. In the case the type is ‘10’ the ‘0’ bit in
the group mask indicates interpolate fap.

Table 6-42 -- fap mask type

mask type Meaning

00 no mask nor fap

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

156

01 group mask
10 group mask’
11 fap

fap_group_mask[group_number]: This is a variable length bit entity that indicates, for a particular group_number
which fap is represented in the bitstream. The value is interpreted as a mask of 1-bit fields. A 1-bit field in the mask
that is set to ‘1’ indicates that the corresponding fap is present in the bitstream. When that 1-bit field is set to ‘0 ’ it
indicates that the fap is not present in the bitstream. The number of bits used for the fap_group_mask depends on
the group_number, and is given in Table 6-43 .

Table 6-43 -- fap group mask bits

group_number No. of bits

1 2
2 16
3 12
4 8

5 4
6 5
7 3
8 10
9 4

10 4

NFAP[group_number] : This indicates the number of FAPs in each FAP group. Its values are specified in the
following table:

Table 6-44 -- NFAP definition

group_number NFAP[group_number]

1 2
2 16
3 12
4 8
5 4
6 5
7 3
8 10
9 4

10 4

fba_suggested_gender: This is a 1-bit integer indicating the suggested gender for the face model. It does not
bind the decoder to display a facial model of suggested gender, but indicates that the content would be more
suitable for display with the facial model of indicated gender, if the decoder can provide one. If
fba_suggested_gender is 1, the suggested gender is male, otherwise it is female.

fba_object_coding_type : This is a 1-bit integer indicating which coding method is used. Its meaning is described
in Table 6-39.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

157

Table 6-39 -- fba_object_coding_type

type value Meaning

0 predictive coding
1 DCT

is_i_new_max: This is a 1-bit flag which when set to ‘1 ’ indicates that a new set of maximum range values for I
frame follows these 4, 1-bit fields.

is_i_new_min : This is a 1-bit flag which when set to ‘1’ indicates that a new set of minimum range values for I
frame follows these 4, 1-bit fields.

is_p_new_max: This is a 1-bit flag which when set to ‘1 ’ indicates that a new set of maximum range values for P
frame follows these 4, 1-bit fields.

is_p_new_min : This is a 1-bit flag which when set to ‘1 ’ indicates that a new set of minimum range values for P
frame follows these 4, 1-bit fields.

bap_pred_quant_index: This is a 5-bit unsigned integer used as the index to a bap_pred_scale table for
computing the quantisation step size of BAP values for predictive and DCT coding. If fba_object_coding_type is
predictive, the value of bap_pred_scale is specified in the following list:

bap_pred_scale[0-31]=
 { 0, 1, 2, 3, 5, 7, 9, 11, 14, 17, 20, 23, 27, 31, 35, 39, 43, 47, 52, 57, 62, 67, 72,
77, 82, 88, 94, 100, 106, 113, 120, 127}

If the fba_object_coding_type is DCT this is a 5-bit unsigned integer used as the index to a bap_scale table for
computing the quantisation step size of DCT coefficients. The value of bap_scale is specified in the following list:

bap_scale[0 – 31] = { 1, 1, 2, 3, 5, 7, 8, 10, 12, 15, 18, 21, 25, 30, 35, 42,

 50, 60, 72, 87, 105, 128, 156, 191, 234, 288, 355, 439, 543, 674, 836, 1039}

bap_mask_type: This 2-bit value determines whether BAPs are transmitted individually or in groups.

bap_mask_type Meaning

00 No BAPs
01 BAPs transmitted in groups
10 reserved
11 BAPs transmitted individually

bap_group_mask: this is a variable-length mask indicating which BAPs in a group are present in the
fba_object_plane.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

158

group number group name No. of. bits

1 Pelvis 3
2 Left leg1 4
3 Right leg1 4
4 Left leg2 6
5 Right leg2 6
6 Left arm1 5
7 Right arm1 5
8 Left arm2 7
9 Right arm2 7

10 Spine1 12
11 Spine2 15
12 Spine3 18
13 Spine4 18
14 Spine5 12
15 Left hand1 16
16 Right hand1 16
17 Left hand2 13
18 Right hand2 13
19 Global

positioning
6

20 Extension1 22
21 Extension2 22
22 Extension3 22
23 Extension4 22
24 Extension5 22

bap_is_i_new_max: This is a 1-bit flag which when set to ‘1’ indicates that a new set of maximum range values for
I frame follows these 4, 1 -bit fields.

bap_is_i_new_min: This is a 1-bit flag which when set to ‘1 ’ indicates that a new set of minimum range values for I
frame follows these 4, 1-bit fields.

bap_is_p_new_max: This is a 1-bit flag which when set to ‘1’ indicates that a new set of maximum range values
for P frame follows these 4, 1-bit fields.

bap_is_p_new_min: This is a 1-bit flag which when set to ‘1’ indicates that a new set of minimum range values for
P frame follows these 4, 1 -bit fields.

6.3.10.3 Temporal Header

The frame rate, time code and skip frames information is independently associated with face, body or both
depending on the fba_object_mask. For example, if the frame rate is set to 30Hz during a frame with
fba_object_mask=’01’ (face) followed by a frame with frame rate set to 15Hz with fba_object_mask=’10’ (body)
then the frame rate for the face remains set to 30Hz. If the fba_object_mask=’11’ the temporal information is
applied to both face and body.

is_frame_rate : This is a 1-bit flag which when set to ‘1’ indicates that frame rate information follows this bit field.
When set to ‘0’ no frame rate information follows this bit field.

is_time_code: This is a 1-bit flag which when set to ‘1 ’ indicates that time code information follows this bit field.
When set to ‘0’ no time code information follows this bit field.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

159

time_code : This is a 18-bit integer containing the following: time_code_hours, time_code_minutes, marker_bit and
time_code_seconds as shown in Table 6-41. The parameters correspond to those defined in the IEC standard
publication 461 for “time and control codes for video tape recorders”. The time code specifies the modulo part (i.e.
the full second units) of the time base for the current object plane.

Table 6-41 -- Meaning of time_code

time_code range of value No. of bits Mnemonic

time_code_hours 0 - 23 5 uimsbf
time_code_minutes 0 - 59 6 uimsbf
marker_bit 1 1 bslbf
time_code_seconds 0 - 59 6 uimsbf

skip_frames: This is a 1-bit flag which when set to ‘1’ indicates that information follows this bit field that indicates
the number of skipped frames. When set to ‘0’ no such information follows this bit field.

6.3.10.4 Decode frame rate and frame skip

frame_rate : This is an 8 bit unsigned integer indicating the reference frame rate of the sequence.

seconds : This is a 4 bit unsigned integer indicating the fractional reference frame rate. The frame rate is
computed as follows frame rate = (frame_rate + seconds/16).

frequency_offset: This is a 1-bit flag which when set to ‘1 ’ indicates that the frame rate uses the NTSC frequency
offset of 1000/1001. This bit would typically be set when frame_rate = 24, 30 or 60, in which case the resulting
frame rate would be 23.97, 29.94 or 59.97 respectively. When set to ‘0 ’ no frequency offset is present. I.e. if
(frequency_offset ==1) frame rate = (1000/1001) * (frame_rate + seconds/16).

number_of_frames_to_skip: This is a 4-bit unsigned integer indicating the number of frames skipped. If the
number_of_frames_to skip is equal to 15 (pattern “1111”) then another 4-bit word follows allowing to skip up to 29
frames(pattern “ 11111110”). If the 8-bits pattern equals “11111111”, then another 4 -bits word will follow and so on,
and the number of frames skipped is incremented by 30. Each 4-bit pattern of ‘ 1111’ increments the total number of
frames to skip with 15.

6.3.10.5 Decode new minmax

i_new_max[j]: This is a 5-bit unsigned integer used to scale the maximum value of the arithmetic decoder used in
the I frame.

i_new_min[j]: This is a 5-bit unsigned integer used to scale the minimum value of the arithmetic decoder used in
the I frame.

p_new_max[j]: This is a 5-bit unsigned integer used to scale the maximum value of the arithmetic decoder used in
the P frame.

p_new_min[j]: This is a 5-bit unsigned integer used to scale the minimum value of the arithmetic decoder used in
the P frame.

6.3.10.6 Decode viseme and expression

viseme_def: This is a 1-bit flag which when set to ‘1’ indicates that the mouth FAPs sent with the viseme FAP may
be stored in the decoder to help with FAP interpolation in the future.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

160

init_face: This is a 1-bit flag which when set to ‘1 ’ indicates that the neutral face may be modified within the neutra l
face constraints.

expression_def: This is a 1-bit flag which when set to ‘1 ’ indicates that the FAPs sent with the expression FAP
may be stored in the decoder to help with FAP interpolation in the future.

6.3.10.7 Decode viseme_segment and expression_segment

viseme_segment_select1q[k]: This is the quantized value of viseme_select1 at frame k of a viseme FAP
segment.

viseme_segment_select2q[k]: This is the quantized value of viseme_select2 at frame k of a viseme FAP
segment.

viseme_segment_blendq[k]: This is the quantized value of viseme_blend at frame k of a viseme FAP segment.

viseme_segment_def[k]: This is a 1-bit flag which when set to ‘1’ indicates that the mouth FAPs sent with the
viseme FAP at frame k of a viseme FAP segment may be stored in the decoder to help with FAP interpolation in
the future.

viseme_segment_select1q_diff[k]: This is the prediction error of viseme_select1 at frame k of a viseme FAP
segment.

viseme_segment_select2q_diff[k]: This is the prediction error of viseme_select2 at frame k of a viseme FAP
segment.

viseme_segment_blendq_diff[k]: This is the prediction error of viseme_blend at frame k of a viseme FAP
segment.

expression_segment_select1q[k]: This is the quantized value of expression_select1 at frame k of an expression
FAP segment.

expression_segment_select2q[k]: This is the quantized value of expression_select2 at frame k of an expression
FAP segment.

expression_segment_intensity1q[k]: This is the quantized value of expression_intensity1 at frame k of an
expre ssion FAP segment

expression_segment_intensity2q[k]: This is the quantized value of expression_intensity2 at frame k of an
expression FAP segment

expression_segment_select1q_diff[k]: This is the prediction error of expression_select1 at frame k of an
expression FAP segment.

expression_segment_select2q_diff[k]: This is the prediction error of expression_select2 at frame k of an
expression FAP segment.

expression_segment_intensity1q_diff[k]: This is the prediction error of expression_intensity1 at frame k of an
expression FAP segment.

expression_segment_intensity2q_diff[k]: This is the prediction error of expression_intensity2 at frame k of an
expression FAP segment.

expression_segment_init_face[k]: This is a 1-bit flag which indicates the value of init_face at frame k of an
expression FAP segment.

expression_segment_def[k]: This is a 1-bit flag which when set to ‘1 ’ indicates that the FAPs sent with the
expression FAP at frame k of a viseme FAP segment may be stored in the decoder to help with FAP interpolation
in the future.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

161

6.3.10.8 Decode i_dc, p_dc, and ac

dc_q: This is the quantized DC component of the DCT coefficients. For an intra FAP segment, this component is
coded as a signed integer of either 16 bits or 31 bits. The DCT quantisation parameters of the 68 FAPs are
specified in the following list:

DCTQP[1 - 68] = {1, 1, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5,

 7.5, 7.5, 7.5, 15, 15, 15, 15, 5, 10, 10,

 10, 10, 425, 425, 425, 425, 5, 5, 5, 5,

 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 20, 20,

 20, 20, 10, 10, 10, 10, 255, 170, 255, 255,

 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5,

 15, 15, 15, 15, 10, 10, 10, 10}

For DC coefficients, the quantisation stepsize is obtained as follows:

qstep[i] = fap_scale[fap_quant_inex] * DCTQP[i] ÷ 3.0

dc_q_diff: This is the quantized prediction error of a DC coefficient of an inter FAP segment. Its value is
computed by subtracting the decoded DC coefficient of the previous FAP segment from the DC coefficient of the
current FAP segment. It is coded by a variable length code if its value is within [-255, +255]. Outside this range, its
value is coded by a signed integer of 16 or 32 bits.

count_of_runs : This is the run length of zeros preceding a non -zero AC coefficient.

ac_q[i][next]: This is a quantized AC coefficients of a segment of FAPi. For AC coefficients, the quantisation
stepsize is three times larger than the DC quantisation stepsize and is obtained as follows:

qstep[i] = fap_scale[fap_quant_inex] * DCTQP[i]

BAPs are decoded using the same process. For BAPs, DCT quantization parameters (DCTQP[i]) have the same
value as BAP predictive coding step sizes as defined in Annex C.

6.3.10.9 Decode bap min max

bap_i_new_max[i] – This is a 5-bit unsigned integer used to scale the maximum value of the arithmetic decoder
used in the I frame.

bap_i_new_min[i] – This is a 5-bit unsigned integer used to scale the minimum value of the arithmetic decoder
used in the I frame.

bap_p_new_max[i] – This is a 5-bit unsigned integer used to scale the maximum value of the arithmetic decoder
used in the P frame.

bap_p_new_min[i] – This is a 5-bit unsigned integer used to scale the minimum value of the arithmetic decoder
used in the P frame.

6.3.11 3D Mesh Object

6.3.11.1 3D_Mesh_Object

3D_MO_start_code : This is a unique 16-bit code that is used for synchronization purpose. The value of this code
is always ‘0000 0000 0010 0000’.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

162

6.3.11.2 3D_Mesh_Object_Layer

3D_ MOL_start_code : This is a unique 16-bit code that is used for synchronization purpose s. The value of this
code is always ‘0000 0000 0011 0000’.

mol_id: This 8-bit unsigned integer specifies a unique id for the mesh object layer. Value 0 indicates a base layer,
and value larger than 0 a refinement layer. The first 3D_Mesh_Object_Layer immediately after a
3D_Mesh_Object_Header must have mold_id=0, and subsequent 3DMesh_Object_Layer's within the same
3D_Mesh_Object must have mold_id>0.

ce_SNHC_n_vertices: This is the number of vertices in the current resolution of the 3D mesh. Used to support
computational graceful degradation.

ce_SNHC_n_triangles: This is the number of triangles in the current resolution of the 3D mesh. Used to support
computational gracefu l degradation.

ce_SNHC_n_edges: This is the number of edges in the current resolution of the 3D mesh. Used to support
computational graceful degradation.

6.3.11.3 3DMesh_Object_Base_Layer

3D_ MOBL_start_code : This is a code of length 16 that is used for synchronization purposes. It also indicates
three different partition types for error resilience.

Table V2 - 5 -- Definition of partition type information

3D_MOBL_start_code partition type Meaning

‘0000 0000 0011 0001’ partition_type_0 One or more groups of vg, tt and td.
 ‘0000 0000 0011 0011 ’ partition_type_1 One or more vgs
 ‘0000 0000 0011 0100 ’ partition_type_2 One pair of tt and td.

mobl_id: This 8-bit unsigned integer specifies a unique id for the mesh object component.

one_bit: This boolean value is always true. This value is used for byte alignment.

last_component : This boolean value indicates if there are more connected components to be decoded. If
last_component is ‘1’, then the last component has been decoded. Otherwise there are more components to be
decoded. This field is arithmetic coded

codap_last_vg– This boolean value indicates if the current vg is the last one in the partition. The value is false if
there are more vg s to be decoded in the partition.

codap_vg_id: This unsigned integer indicates the id of the vertex graph corresponding to the current simple
polygon in partition_type_2. The length of this value is a log scaled value of the vg_number of vg decoded from the
previous partition_type_1. If there is only one vg in the previous partition_type_1,

codap_left_bloop_idx: This unsigned integer indicates the left starting index, within the bounding loop table of a
connected component , for the triangles that are to be reconstructed in a partition. The length of this va lue is the log
scaled value of the size of the bounding loop table.

codap_right_bloop_idx: This unsigned integer indicates the right starting index, within the bounding loop table of
a connected component , for the triangles that are to be reconstructed in a partition. The length of this value is the
log scaled value of the size of the bounding loop table.

codap_bdry_pred: This boolean value denotes how to predict geometry and photometry information that are in
common with two or more partitions. If codap_bdry_pred is ‘1’, the restricted boundary prediction mode is used,
otherwise, the extended boundary prediction mode is used.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

163

6.3.11.4 3DMesh_Object_Header

ccw: This boolean value indicates if the vertex ordering of the decoded faces follows a counter clock-wise order.

convex: This boolean value indicates if the model is convex.

solid: This boolean value indicates if the model is solid.

creaseAngle: This 6-bit unsigned integer indicates the crease angle.

6.3.11.5 coord_header

coord_binding: This 2 bit unsigned integer indicates the binding of vertex coordinates to the 3D mesh. Table V2 -
6 shows the admissible values for coord_binding..

Table V2 - 6 -- Admissible values for coord_binding

coord_binding binding

00 forbidden
01 bound_per_vertex
10 forbidden
11 forbidden

coord_bbox : This boolean value indicates whether a bounding box is provided for the geometry. If no bounding
box is provided, a default bounding box is used. The default bounding box is defined as coord_xmin=0,
coord_ymin=0, coord_zmin=0, and coord_size=1.

coord_xmin, coord_ymin , coord_zmin : These floating point values indicates the lower left corner of the bounding
box in which the geometry lies.

coord_size: This floating point value indicates the size of the bounding box.

coord_quant: This 5-bit unsigned integer indicates the quantisation step used for geometry. The minimum value of
coord_quant is 1 and the maximum is 24.

coord_pred_type : This 2-bit unsigned integer indicates the type of prediction used to reconstruct the vertex
coordinates of the mesh. Table V2 - 7 shows the admissible values for coord_pred_type .

Table V2 - 7 -- Admissible values for coord_pred_type

coord_pred_type prediction type

00 no_prediction
01 forbidden
10 parallelogram_prediction
11 reserved

coord_nlambda: This 2-bit unsigned integer indicates the number of ancestors used to predict geometry. The only
admissible value of coord_nlambda is 3. Table V2 - 8 shows the admissible values as a function of
coord_pred_type.

Table V2 - 8 -- Admissible values for coord_nlambda as a function of coord_prediction type

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

164

coord_pred_type coord_nlambda

00 not coded
10 3

coord_lambda : This signed fixed-point number indicates the weight given to an ancestor for prediction. The
number of bits used for this field is equal to coord_quant + 3. The 3 leading bits represent the integer part, and the
coord_quant remaining bits the fractional part.

6.3.11.6 normal_header

normal_binding: This 2 bit unsigned integer indicates the binding of normals to the 3D mesh. The admissible
values are described in Table V2 - 9.

Table V2 - 9 -- Admissible values for normal_binding

normal_binding binding

00 not_bound

01 bound_per_vertex
10 bound_per_face
11 bound_per_corner

normal_bbox: This boolean value should always be false (‘0’).

normal_quant: This 5-bit unsigned integer indicates the quantisation step used for normals. The minimum value of
normal_quant is 3 and the maximum is 31.

normal_pred_type: This 2-bit unsigned integer indicates how normal values are predicted. Table V2 - 10 shows
the admissible values, and Table V2 - 11 shows admissible values as a function of normal_binding.

Table V2 - 10 -- Admissible values for normal_pred_type

normal_pred_type prediction type

00 no_prediction
01 tree_prediction
10 parallelogram_prediction
11 reserved

Table V2 - 11 -- Admissible combinations of normal_binding and normal_pred_type

normal_binding normal_pred_type

not_bound not code d
bound_per_vertex no_prediction, parallelogram_prediction
bound_per_face no_prediction, tree_prediction
bound_per_corner no_prediction, tree_prediction

normal_nlambda : This 2-bit unsigned integer indicates the number of ancestors used to predict normals.
Admissible values of normal_nlambda are 1, 2, and 3. Table V2 - 12 shows admissible values as a function of
normal_pred_type.

Table V2 - 12 -- Admissible values for normal_nlambda as a function of normal_prediction type

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

165

normal_pred_type normal_nlambda

no_prediction not coded
tree_prediction 1, 2, 3

parallelogram_prediction 3

normal_lambda: This signed fixed -point indicates the weight given to an ancestor for prediction. The number of
bits used for normal_lambda is (normal_quant-3)/2+3. The 3 leading bits represent the integer part, and the
normal_quant remaining bits the fractional part.

6.3.11.7 color_header

color_binding: This 2 bit unsigned integer indicates the binding of colors to the 3D mesh. Table V2 - 13 shows the
admissible values.

Table V2 - 13 -- Admissible values for color_binding

color_binding Binding

00 not_bound
01 bound_per_vertex
10 bound_per_face
11 bound_per_corner

color_bbox : This boolean indicates if a bouding box for colors is given. If no bounding box is provided, a default
bounding box is used. The default bounding box is defined as color_rmin=0, color_gmin=0, color_bmin=0, and
color_size=1.

color_rmin, color_gmin , color_bmin: These floating point values give the position of the lower left corner of the
bounding box in RGB space.

color_size: This floating point value gives the size of the color bounding box.

color_quant: This 5-bit unsigned integer indicates the quantisation step used for colors. The minimum value of
color_quant is 1 and the maximum is 16.

color_pred_type : This 2-bit unsigned integer indicates how colors are predicted. Table V2 - 14 shows the
admissible values, and Table V2 - 15 shows admissible values as a function of color_binding.

Table V2 - 14 -- Admissible values for color_pred_type

color_pred_type prediction type

00 no_prediction
01 tree_prediction
10 parallelogram_prediction
11 reserved

Table V2 - 15 -- Admissible combinations of color_binding and color_pred_type

color_binding color_pred_type

not_bound not coded

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

166

bound_per_vertex no_prediction, parallelogram_prediction
bound_per_face no_prediction, tree_prediction
bound_per_corner no_prediction, tree_prediction

color_nlambda: This 2-bit unsigned integer indicates the number of ancestors used to predict normals. Admissible
values of color_nlambda are 1, 2, and 3. Table V2 - 16 shows admissible values as a function of
normal_pred_type.

Table V2 - 16 -- Admissible values for color_nlambda as a function of color_prediction type

color_pred_type color_nlambda

no_prediction not coded
tree_prediction 1, 2, 3
parallelogram_prediction 3

color_lambda : This signed fixed-point indicates the weight given to an ancestor for prediction. The number of bits
used for this field is equal to color_quant + 3. The 3 leading bits represent the integer part, and the normal_quant
remaining bits the fractional part.

6.3.11.8 texCoord_header

texCoord_binding: This 2 bit unsigned integer indicates the binding of texture coordinates to the 3D mesh . Table
V2 - 17 describes the admissible values.

Table V2 - 17 -- Admissible values for texCoord_binding

texCoord_binding Binding

00 not_bound
01 bound_per_vertex
10 forbidden
11 bound_per_corner

texCoord_bbox : This boolean value indicates if a bounding box for texture coordinates is given. If no bounding
box is provided, a default bounding box is used. The default bounding box is defined as texCoord_umin=0,
texCoord_vmin=0, and texCoord_size=1.

texCoord_umin , texCoord_vmin: These floating point values give the position of the lower left corner of the
bounding box in 2D space.

texCoord_size : This floating point value gives the size of the texture coordinate bounding box.

texCoord_quant : This 5-bit unsigned integer indicates the quantisation step used for texture coordinates. The
minimum value of texCoord_quant is 1 and the maximum is 16.

texCoord_pred_type: This 2-bit unsigned integer indicates how colors are predicted. Table V2 - 18 shows the
admissible values, and Table V2 - 19 shows admissible values as a function of texCoord_binding.

Table V2 - 18 -- Admissible values for texCoord_pred_type

texCoord_pred_type prediction type

00 no_prediction

01 forbidden

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

167

10 parallelogram_prediction
11 reserved

Table V2 - 19 -- Admissible combinations of texCoord_binding and texCoord_pred_type

texCoord_binding texCoord_pred_type

not_bound not coded
bound_per_vertex no_prediction, parallelogram_prediction
bound_per_corner no_prediction, tree_prediction

texCoord_nlambda : This 2-bit unsigned integer indicates the number of ancestors used to predict normals.
Admissible values of texCoord_nlambda are 1, 2, and 3. Table V2 - 20 shows admissible values as a function of
texCoord_pred_type.

Table V2 - 20 -- Admissible values for texCoord_nlambda as a function of texCoord_prediction type

texCoord_pred_type texCoord_nlambda

not_prediction not coded
tree_prediction 1, 2, 3
parallelogram_prediction 3

texCoord_lambda : This signed fixed-point indicates the weight given to an ancestor for prediction. The number of
bits used for this field is equal to texCoord_quant + 3. The 3 leading bits represent the integer part, and the
texCoord_quant remaining bits the fractional part.

6.3.11.9 ce_SNHC_header

ce_SNHC_n_proj_surface_spheres: The number of Projected Surface Spheres. Typically, this number is equal to
1.

ce_SNHC_x_coord_center_point : The x-coordinate (in 32-bit IEEE floating point format) of the center point
(typically the gravity point of the object) of the Projected Surface Sphere.

ce_SNHC_y_coord_center_point : The y-coordinate (in 32-bit IEEE floating point format) of the center point
(typically the gravity point of the object) of the Projected Surface Sphere.

ce_SNHC_z_coord_center_point: The z-coordinate (in 32-bit IEEE floating point format) of the center point
(typically the gravity point of the object) of the Projected Surface Sphere.

ce_SNHC_normalized_screen_distance_factor: This indicates where the virtual screen is placed, compared to
the radius of the Projected Surface Sphere. The distance between the center point o f the Projected Surface Sphere
and the virtual screen is equal to ce_SNHC_radius/(ce_SNHC_normalized_screen_distance_factor+1). Note that
ce_SNHC_radius is specified for each Projected Surface Sphere, while
ce_SNHC_normalized_screen_distance_factor is specified only once.

ce_SNHC_radius : The radius (in 32 -bit IEEE floating point format) of the Projected Surface Sphere.

ce_SNHC_min_proj_surface: The minimal projected surface value (in 32-bit IEEE floating point format) on the
corresponding Projected Surface Sphere. This value is often (but not necessarily) equal to one of the
ce_SNHC_proj_surface values.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

168

ce_SNHC_n_proj_points: The number of points on the Projected Surface Sphere in which the projected surface
will be transmitted. For all other points, the projected surface is determined by linear interpolation.
ce_SNHC_n_proj_points is typically small (e.g. 20) for the first Projected Surface Sphere and very small (e.g. 3) for
additional Projected Surface Spheres.

ce_SNHC_sphere_point_coord: This indicates the index of the point position in a octahedron, as explained in
“inverse quantisation” section (see subclause 7.13.8.4).

ce_SNHC_proj_surface: The projected surface (in 32-bit IEEE floating point format) in the point specified by
ce_SNHC_sphere_point_coord.

6.3.11.10 connected component

has_stitches : This boolean value indicates if stitches are applied for the current connected component (within itself
or between the current component and connected components previously decoded) This field is arithmetic coded.

6.3.11.11 vertex_graph

vg_simple: This boolean value indicates if the current vertex graph is simple. A simple vertex graph does not
contain any loop. This field is arithmetic coded.

vg_last: This boolean value indicates if the current run is the last run starting from the current branching vertex.
This field is not coded for the first run of each branching vertex, i.e. when the skip_last variable is true. When not
coded the value of vg_last for the current vertex run is considered to be false. This field is arithmetic coded.

vg_forward_run : This boolean value indicates if the current run is a new run. If it is not a new run, it is a previously
traversed run, indicating a loop in the graph . This field is arithmetic coded.

vg_loop_index: This unsigned integer indicates the index of run to which the current loop connects. Its unary
representation (see Table V2 - 21) is arithmetic coded. If the variable openloops is equal to vg_loop_index, the
trailing ‘1 ’ in the unary representation is omitted.

Table V2 - 21 -- Unary representation of the vg_loop_index field

vg_loop_index unary
representation

0 1
1 01
2 001
3 0001
4 00001
5 000001
6 0000001
...
openloops-1 openloops-1 0’s

vg_run_length : This unsigned integer indicates the length of the current vertex run. Its unary representation (see
Table V2 - 22) is arithmetic coded.

Table V2 - 22 -- Unary representation of the vg_run_length field

vg_run_length unary
representation

1 1

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

169

2 01
3 001
4 0001
5 00001
6 000001
7 0000001
8 00000001
N n-1 0's followed by

1

vg_leaf: This boolean value indicates if the last vertex of the current run is a leaf vertex. If it is not a leaf vertex, it is
a branching vertex. This field is arithmetic coded.

vg_loop: This boolean value indicates if the leaf of the current run connects to a branching vertex of the graph,
indicating a loop. This field is arithmetic coded.

6.3.11.12 stitches

stitch_cmd: This boolean value indicates if a stitching command of the type PUSH, POP or GET is associated to
the current vertex. This field is arithmetic coded.

stitch_pop_or_get: This boolean value indicates if a stitching command of the type POP or GET is associated to
the current vertex. This field is arithmetic coded.

stitch_pop : This boolean value indicates if a stitching command of the type POP is associated to the current vertex.
This field is arithmetic coded.

stitch_stack_index : This unsigned integer value indicates the depth in the anchor stack where the anchor which
the current vertex will be stitched to is located. This field is arithmetic coded.

stitch_incr_length : This integer value indicates the incremental length of the current stitch that must be added or
subtracted to the length that is currently stored at the anchor. This field is arithmetic coded.

stitch_incr_length_sign: This boolean value indicates if the stitch_incr_length is negative. This field is arithmetic
coded.

stitch_push: This boolean value indicates if the current vertex must be pushed into the stack of anchors. This field
is arithmetic coded.

stitch_reverse : This boolean value indicates whether the current vertex must be stitched to its anchor using a
reverse stitch as opposed to a forward stitch which is the default behavior. This field is arithmetic coded

stitch_length: This unsigned integer value. This field is arithmetic coded.

6.3.11.13 triangle_tree

branch_position: This integer variable is used to store the last branching triangle in a partition.

tt_run_length: This unsigned integer indicates the length of the current triangle run. Its unary representation (see
Table V2 - 23) is arithmetic coded.

Table V2 - 23 -- Unary representation of the tt_run_length field

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

170

tt_run_length unary
representation

1 1
2 01
3 001
4 0001
5 00001
6 000001
7 0000001
8 00000001
N n-1 0's followed by

1

tt_leaf: This boolean value indicates if the last triangle of the current run is a leaf triangle. If it is not a leaf triangle, it
is a branching triangle. This field is arithmetic coded.

triangulated: This boolean value indicates if the current component contains triangles only. This field is arithmetic
coded.

marching_triangle: This boolean value is determined by the position of the triangle in the triangle tree. If
marching_triangle is 0 , the triangle is a leaf or a branch. Otherwise, the triangle is a run.

marching_ edge: This boolean value indicates the marching edge of an edge inside a triangle run. If
marching_edge is false, it stands for a march to the left, otherwise it stands for a march to the right. This field is
arithmetic coded.

polygon_edge: This boolean value indicates whether the base of the current triangle is an edge that should be
kept when reconstructing the 3D mesh object. If the base of the current triangle is not kept, the edge is discarded.
This field is arithmetic coded.

codap_branch_len: This unsigned integer indicates the length of the next branch to be traversed. The length of
this value is the log scaled value of the size of the bounding loop table.

6.3.11.14 triangle

td_orientation: This boolean value informs the decoder the traversal order of tt/td pair at a branch. This field is
arithmetic coded. Table V2 - 24 shows the admissible values.

Table V2 - 24 -- Admissible values for td_orientation

td_orientation traversal order

0 right branch first
1 left branch first

visited: This variable indicates if the current vertex has been visited or not. When codap_bdry_pred is ‘1’, visited is
true for the vertices visited in the current partition. However, when codap_bdry_pred is ‘0’, visited is true for the
vertices visited in the previous partitions as well as in the current partition.

vertex_index: This variable indicates the index of the current vertex in the vertex array.

no_ancestors: This boolean value is true if there are no ancestors to use for prediction of the current vertex.

coord_bit: This boolean value indicates the value of a geometry bit. This field is arithmetic coded.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

171

coord_leading_bit: This boolean value indicates the value of a leading geometry bit. This field is arithmetic coded.

coord_sign_bit: This boolean value indicates the sign of a geometry sample. This field is arithmetic coded.

coord_trailing_bit: This boolean value indicates the value of a trailing geometry bit. This field is arithmetic coded.

normal_bit: This boolean value indicates the value of a normal bit. This field is arithmetic coded.

normal_leading_bit: This boolean value indicates the value of a leading normal bit. This field is arithmetic coded.

normal_sign_bit: This boolean value indicates the sign of a normal sample. This field is arithmetic coded.

normal_trailing_bit: This boolean value indicates the value of a trailing normal bit. This field is arithmetic coded.

color_bit: This boolean value indicates the value of a color bit. This field is arithmetic coded.

color_leading_bit: This boolean value indicates the value of a leading color bit. This field is arithmetic coded.

color_sign_bit: This boolean value indicates the sign of a color sample. This field is arithmetic coded.

color_trailing_bit: This boolean value indicates the value of a trailing color bit. This field is arithmetic coded.

texCoord_bit: This boolean value indicates the value of a texture bit. This field is arithmetic coded.

texCoord_leading_bit: This boolean value indicates the value of a leading texture bit. This field is arithmetic coded.

texCoord_sign_bit: This boolean value indicates the sign of a texture sample. This field is arithmetic coded.

texCoord_trailing_bit: This boolean value indicates the value of a trailing texture bit. This field is arithmetic coded.

6.3.11.15 3DMeshObject_Refinement_Layer

3D_MORL_start_code : This is a unique 16-bit code that is used for synchronization purpose. The value of this
code is always ‘0000 0000 0011 0010’.

morl_id : This 8-bit unsigned integer specifies a unique id for the forest split component.

connectivity_update: This 2-bit variable indicates whether the forest split operation results in a refinement of the
connectivity of the mesh or not.

Table V2 - 25 -- Admissible values for connectivity_update

connectivity_update meaning

00 not_updated
01 fs_update
10 reserved
11 reserved

pre_smoothing : This boolean value indicates whether the current forest split operation uses a pre -smoothing step
to globally predict vertex positions.

post_smoothing: This boolean value indicates whether th e current forest split operation uses a post -smoothing
step to remove quantisation artifacts.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

172

stuffing_bit: This boolean value is always true.

other_update : This boolean value indicates whether updates for vertex coordinates and properties associated with
faces and corners not incident to any tree of the forest follow in the bitstream or not.

other_update : this boolean value indicates whether updates for vertex coordinates and properties associated with
faces and corners not incident to any tree of the fore st follow in the bitstream or not.

6.3.11.15.1 pre_smoothing_parameters

pre_smoothing_n: This integer value indicates the number of iterations of the pre -smoothing filter.

pre_smoothing_lambda : This float value is the first parameter of the pre-smoothing filter.

pre_smoothing_mu: This float value is the second parameter of the pre-smoothing filter.

6.3.11.15.2 post_smoothing_parameters

post_smoothing_n: This integer value indicates the number of iterations of the pre-smoothing filter.

post_smoothing_lambda: This float value is the first parameter of the pre-smoothing filter.

post_smoothing_mu : This float value is the second parameter of the pre-smoothing filter.

6.3.11.15.3 fs_pre_update

pfs_forest_edge : This boolean value indicates if an edge should be added to the forest built so far.

6.3.11.15.4 smoothing_constraints

smooth_with_sharp_edges : This boolean value indicates if data is included in the bitstream to mark smoothing
discontinuity edges or not. If sharp_edges ==0 no edge is marked as a smoothing discontinuity edge. If smoothing
discontinuity edges are marked, then both the pre -smoothing and post-smoothing filters take them into account.

smooth_with_fixed_vertices: This boolean value indicates if data is included in the bitstream to mark vertices
which do not move during the smoothing process. If smooth_with_fixed_vertices==0 all vertices are allowed to
move. If fixed vertices are marked, then both the pre -smoothing and post-smoothing filters take them into account.

smooth_sharp_edge : This boolean value indicates if a corresponding edge is marked as a smoothing
discontinuity edge.

smooth_fixed_vertex: This boolean value indicates if a corresponding vertex is marked as a fixed vertex or not.

6.3.12 Upstream message

6.3.12.1 upstream_message

upstream_message_type : This 3-bit value indicates the type of the upstream information as shown in Table V2 -
26. The meaning of each upstream type is as follows:

video_ newpred: This upstream message conveys the decoding status of the receiver (decoder) for the
NEWPRED mode. The NEWPRED is the error resilience tool by selecting the reference picture of the inter-
frame coding according to the error condition of the network. This upstream message shows whether the
decoder decode the forward video data correctly or not. This message returns corresponding to the VOP or
Video Packet of the forward video data. Which type of message is required for the encoder is indicated in
requested_upstream_message_type in the VOL header of the downstream data. The decoder definitions of
NEWPRED are described in subclause s 7.14 and E.1.6.

FINAL DRAFT AMENDMENT ISO/IEC 14496-2:1999/FDAM 1:1999(E)

173

SNHC_QoS: This upstream message conveys some information that reveals to the encoder (server) the
performances of the decoder w.r.t. decoding and rendering 3D objects with different parameter settings, i.e. with
a varying number of triangles, different screen coverages of the rendered objects and different rendering modes.
Using this information, the encoder can restrict the 3D content to the capabilities of the decoder, using for
instance mesh simplification and/or rendering mode selection.

Table V2 - 26 -- Meaning of upstream_message_type

upstream_message_type meaning

000 reserved
001 video_newpred
010 SNHC_QoS
011-111 reserved

6.3.12.2 upstream_video_newpred

newpred_upstream_message_type : This indicates whether the corresponding NP segment is correctly decoded
or not. Which type of message is required for the encoder is indicated in requested_upstream_message_type in the
VOL header of the downstreamdata. In the other case, this indicates requesting intra refresh.

00: NP_NACK. It indicates the erroneous decoding of the NP segment.
01: NP_ACK. It indicates the correct decoding of the NP segment.
10: Intra refresh command.
11: Reserved.

unreliable_flag: This field presents only if newpred_upstream_message_type is ‘NP_NACK’. The unreliable_flag is
set to 1 when a reliable value of vop_id is not available at the decoder. (When the NP segment is erred, a reliable
vop_id may not be available at the decoder. On the other hand, a reliable vop_id is available, when the decoder
cannot decode due to the luck of the reference picture.)

0: reliable
1: unreliable

vop_id : When the newpred_upstream_message_type is ‘NP_NACK’ or ‘NP_ACK’, this indicates the ID of VOP
which is incremented by 1 whenever a VOP is encoded. The vop_id is copied from the vop_id field of the NP
segment header in the corresponding forward channel data when the reliable vop_id is available. Otherwise, it may
happen in the case of NP_NACK that the vop_id is incremented by 1 from the reliable vop_id of the previously
received NP segment in the same location of the current NP segment.

When the newpred_upstream_message_type is ‘Intra refresh command’, this indicates the ID of Intra refresh which
is incremented by 1 whenever new refresh is required. The length of this field is 4 bits in the Intra refresh case. In
the case that Intra refresh command is repeatedly returned for the same error until the proper action corresponding
to the previous Intra refresh command reaches, this ID is set to the same number as the previous Intra refresh
command.

macroblock_number: The macroblock_number is the macroblock address of the start of the corresponding NP
segment or the refresh area.

end_macroblock_number: This field is present only when the newpred_upstream_message_type is ‘Intra refresh
command’. The end_macroblock_number is the macroblock address of the end of the refresh area.

ISO/IEC 14496-2:1999/FDAM 1:1999(E)

174

requested_vop_id_for_prediction : This field is present only if newpred_upstream_message_type is ‘NP_NACK’.
This indicates the requested vop_id of the NP segment for reference by the decoder. Typically it is the vop_id of the
last correctly decoded NP segment in the same location of the current NP segment.

6.3.12.3 upstream_ SNHC_QoS

screen_width: Screen wi dth used during the calibration process. screen_width is expressed in number of pixels.

screen_height: Screen height used during the calibration process. screen_height is expressed in number of pixels.

n_rendering_modes: n_rendering_modes is the number of rendering modes for which information is transmitted.

rendering_mode_type: rendering_mode_type is the kind of rendering used during the calibration process for a
particular performance curve. The different rendering types are coded according to the followi ng table.

Table V2 - 27 -- Meaning of rendering_mode_type

rendering_mode_type Rendering mode

0000 Wire-framed
0001 Flat shading
0010 Smooth shading
0011 Texture rendering
0100-1111 Reserved for later use

n_curves: n_curves is the number of performance curves transmitted for one particular rendering mode.

triangle_parameter: triangle_parameter is the number of triangles in units of 64 triangles.

n_points_on_curve: n_points_on_curve is the number of points specified for one particular performance curve.

screen_coverage_parameter: screen_coverage_parameter is the number of pixels, expressed in percentage of
the screen size. 0x00 corresponds to 0%, while 0xFF corresponds to 100%. All other points are determined by
linear interpolation.

frame_rate_value : frame_rate_value is the frame rate for one particular point on one particular curve. For
achieving enough precision, 12 bits are used. The 8 Most Significant Bits represent the integer value, the 4 Least
Significant Bits represent the fractional value.

7 The visual decoding process

This clause specifies the decoding process that the decoder shall perform to recover visual data from the coded
bitstream. As shown in Figure 7-1, the visual decoding process includes several decoding processes such as
shape-motion-texture decoding, still texture decoding, mesh decoding, and face decoding processes. After
decoding the coded bitstream, it is then sent to the compositor to integrate various visual objects.

