

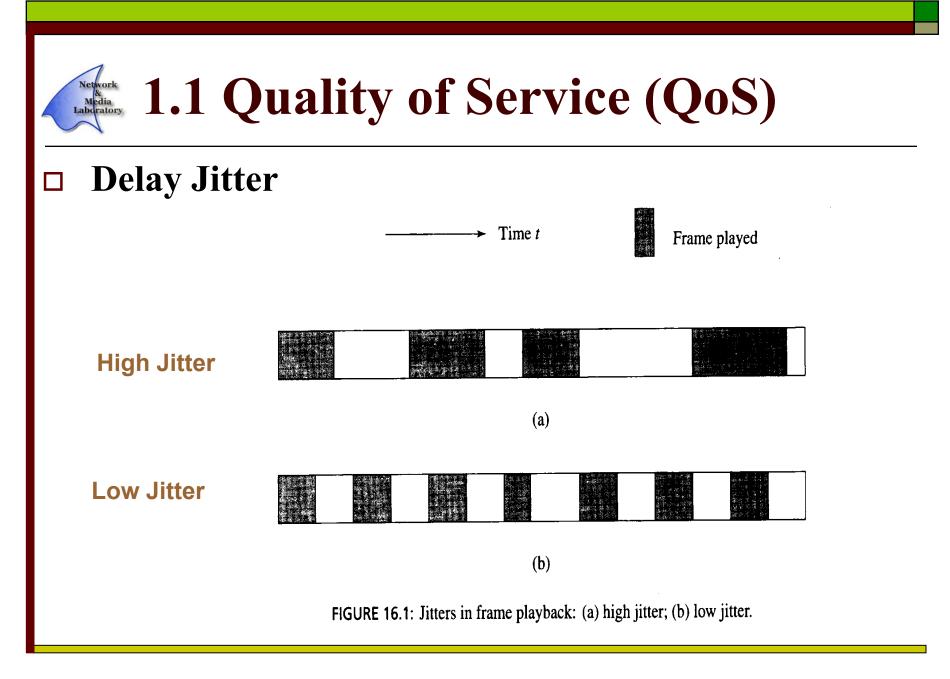
Fundamentals of Multimedia &13 Multimedia Network Communication 1

Lecture 13 Multimedia Network Communication and Application

Quality of Multimedia Data Transmission

- Quality of Service (QoS)
- QoS for IP Protocols
- Prioritized Delivery
- Multimedia over IP
 - IP-Multicast
 - RTP/RTCP; RSVP
 - RTSP; VOIP

Media-On-Demand, MOD


1. Quality of Multimedia Data Transmission

Fundamentals of Multimedia &13 Multimedia Network Communication 4

Network 1.1 Quality of Service (QoS)

Some most important parameters for QoS

- Data rate: Mbps
 - A measure of transmission speed kbps
- □ Latency: ms
 - Maximum frame/packet delay
- $\Box PLR:$
 - Packet Loss Rate
- Delay Jitter:
 - A measure of smoothness of the audio/video playback
- □ Sync Skew: ms
 - A measure of multimedia data synchronization
 - Usually 20ms~±200ms can be acceptable

Network 1.1 Quality of Service (QoS)

Types of multimedia applications:

- □ **Real-Time/Conversational:** Two-way traffic, low latency and jitter, like voice telephony and video telephony.
- Priority data: Two-way traffic, low loss and low latency, like e-commence application
- Silver: Moderate latency and jitter, strict ordering and sync. like streaming video, internet games
- Best-Effort: No real-time requirement, downloading or transferring large files
- **Bronze:** No guarantees for transmission

1.1 Quality of Service (QoS)

Perceived QoS

Network & Media Laboratory

- Regularity is more important than latency.
- Temporal correctness is more important than the sound and picture quality.
- User focus is usually at the center of the screen, and it takes time to refocus, especially after a scene change.

Many issues of perception can be exploited in achieving the best perceived QoS in networked Multimedia.

1.2 QoS for IP Protocols

Status of QoS:

- Frame relay and ATM provide some levels of QoS.
- IP is a Best-Effort communication technique, it's hard to provide QoS by current routing methods.

Could abundant bandwidth provide IP QoS?

- Abundant bandwidth is not available everywhere.
- Even if it's available everywhere, bandwidth alone can't resolve problems due to sudden peaks in traffic.

1.2 QoS for IP Protocols

IETF suggestions for QoS

- DiffServ: Edge Router, classifies streams according to their applications, core routers transmit data according their priorities.
 - IPv4, uses DiffServ code [TOS (Type of Service)] to enable their differentiated treatment.
 - **IPv6:** Traffic Class octet to classify the packets

For more details: RFC 2998: http://www.faqs.org/rfcs/

Media 1.2 QoS for IP Protocols

IETF suggestions for QoS

- Multiple Protocol Label Switching (MPLS): facilitates the marriage of IP to OSI layer 2 technologies, such as ATM, by overlaying a protocol on top of IP.
- It inserts one or more shim labels into the header of an IP packet, (Create tunnels, Label Switch Path)

MPLS: Traffic Engineering MPLS: Virtual Private Networks

For more details: RFC 3031 : http://www.faqs.org/rfcs/

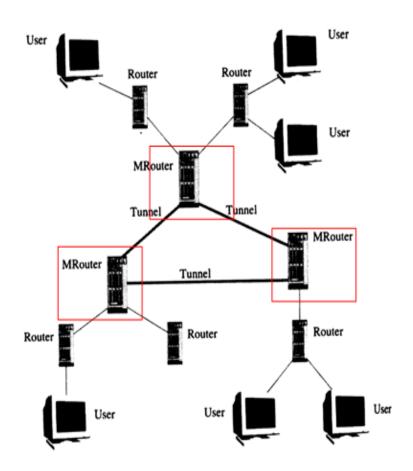
1.3 Prioritized Delivery

- Prioritized Delivery to alleviate the perceived deterioration when high packet loss occur
 - Prioritization for types of media: e.g., giving higher priority to audio than to video
 - Prioritization for uncompressed audio: sent k of total n groups PCM samples, receiver interpolate the lost groups
 - Prioritization for JPEG image: e.g., highest priority for the scan with the DC and first few AC coefficients
 - Prioritization for compressed video: e.g., giving the highest priority to I-frames and the lowest priority to B-frames

2. Multimedia Over IP

Fundamentals of Multimedia &13 Multimedia Network Communication 13

- **Broadcast:** Sent message to all nodes in the domain.
- Unicast: Sent to only one node.
- Multicast: Sent message to a set of specified nodes.


IP-multicast enables multicast on the Internet

- Bulletin Boards
- Group file transfer
- Audio/video-on-demand

....

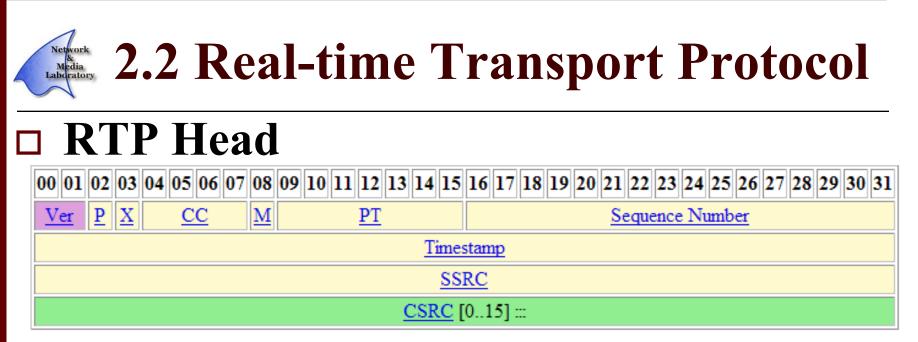
- **MBone** (Internet Multicast Backbone)
 - Based on IP-multicast technology
 - Starting in the early 1990
 - Many routers don't support multicast, Mbone uses MRouter to support multicast.

- IPv4 multicast address
 - From 224.0.0.0 ~ 239.255.255.255
 - The host maps IP group addresses into a list of recipients, then multicasts.

(FDDI and Ethernet have hardware multicast)

- TTL (time to live), if TTL is 0, the packet is discarded
 - TTL to avoid too many packets alive in the network.
- IP-multicast is based on UDP, packets are delivered by "Best-Effort", so reliability is limited.

IGMP (Internet Group Management Protocol)


- IGMP was designed to help the maintenance of multicast groups.
- IGMP has two special types of messages: Query and Report
 - Query messages are multicast by routers to all local hosts, to inquire about group membership.
 - On receiving a query, members wait for a random time before responding.

Reliable Multicast Transport

- MBone maintains as a flat virtual topology and does not provide good route aggregation.
- No central management, ineffective tunnel management.
- □ RMTP&RMTP II
 - Support forward error control (FEC), targeted for real-time delivery of multimedia data

- **TCP:** Not suitable for real-time multimedia applications
 - Retransmission: introduce great latency and congestion etc
- RTP: For the transport of real-time data, such as (Audio/Video) streams
 - RTP can be applied to multicast or unicast
 - RTP runs on top of UDP
 - UDP not guarantee data packet arrive in original order
 - RTP create its own timestamping and sequencing mechanisms to ensure the ordering

- Bit0 and 1: version of RTP
- Bit2: signals a padded payload
- Bit3: signals an extension to RTP Header
- Bit4 through 7: CSRC count indicates the number of CSRC IDs following the fixed part of the header
- Bit8: signals the first packet in an audio frame or last packet in a video frame

- □ Bit 9 through 15 (PT) Payload Type (7 bits):
 - Indicates the media data type as well as its encoding scheme, so that the receiver knows how to decode it.
 - Payload type 0: PCM mu-law, 64 kbps
 - Payload type 3, GSM, 13 kbps
 - Payload type 7, LPC, 2.4 kbps
 - Payload type 26, Motion JPEG
 - Payload type 31. H.261
 - Payload type 33, MPEG2 video

PT values of different encoding types

- □ Bit16 through 31 Sequence Number (16 bits):
 - Incremented by 1 for each RTP data packet sent
 - Check if the data packets arrive in the original order or some packets are lost.

□ **Timestamp** field (32 bytes):

- The most important mechanism of RTP
- The sender use timestamp records the instant when the first octet of the packet is sampled
- The receiver play the audio/video in proper timing order and synchronize multiple streams

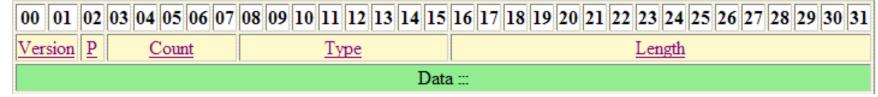
Laboratory 2.2 Real-time Transport Protocol

□ SSRC field (32 bits):

Identifies sources of multimedia data. Each RTP stream in a conversation has different SSRC ID

□ **CSRC** field (variable length)

Identifies the source of contributors, such as all speakers in an audio conference


2.3 Real-Time Control Protocol RTCP

RTCP: A companion protocol of RTP

(The same IP, Different Port)

- RTP itself don't provide QoS guarantee.
- RTCP provide information of QoS feedback
- The sender can adjust the strategy of transmission

5 types of RCTP packets:

2.3 Real-Time Control Protocol RTCP

□ Receiver Report (RR) :

Network

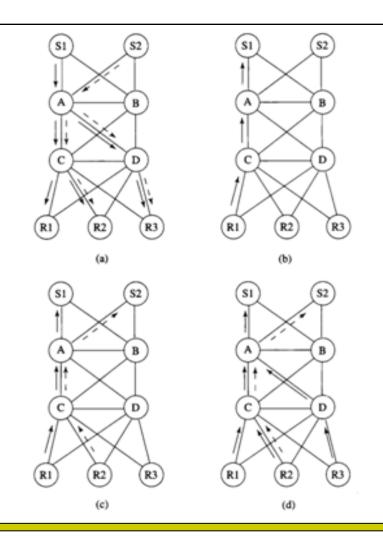
- Provides quality feedback (number of lost packets, etc.)
- □ Sender Report (SR) :
 - Provides information about the reception of RR, number of packets/bytes sent, and so on.
- □ Source description (SDES) :
 - Information about the source, such as e-mail, phone number, name of the participant

Bye:

- The end of participation.
- □ Application specific functions (APP) :
 - Provides for future extension of new features

RSVP (Resource Reservation protocol)

- RSVP developed to guarantee desirable QoS
- Mostly for multicast, also applicable to unicast
- Main challenges of RSVP
 - Senders and receivers compete for the limited network bandwidth
 - Receivers can be heterogeneous in demanding different contents with different QoS
 - They can be dynamic joining or quitting multicast groups.



The most important messages of RSVP:

- Path: Initiated by the sender and travels towards the multicast destination addresses. Contains information about the sender and the path.
- Resv: sent by receiver that wishes to make a reservation.
- **RSVP receiver-initiated**
- □ RSVP creates only soft state
 - The receiver host must maintain the soft state by periodically sending the same Resv message

- e.g. m Senders and n
 Receivers in various
 multicast groups
 - (a) S1 and S2 send PATH message to all receivers
 - (b)R1 sends RESV message to S1
 - (c)R2 sends RESV message to S2
 - (d)R2 and R3 send
 RESV messages to S1

2.5 Real-Time Streaming Protocol (RTSP) Media Laboratory

- **Traditionary, Play-after-Downloading**
 - **Download the whole file, then playback**
- **Play-While-Downloading**

Network

- The buffer is filled to a certain extent, uncompress the buffer data then playback
- The buffer space needs to be sufficiently large to deal with the possible jitter and to produce continuous, smooth playback
- **RTSP** (Real-Time Streaming Protocol) is for communication between a client and a stored media sever

2.5 Real-Time Streaming Protocol (RTSP)

Four RTSP operations:

- Requesting presentation description
- Session setup
- Requesting and receiving media
- Session closure

- Public switched telephone network (PSTN) carrying analog voice signals.
 - Provides reliable and low-cost voice and facsimile services.
- PCs and Internet became readily available and more voice data become digital
 - VOIP attract a great deal of interest in research and communications.

□ Main advantages of VOIP:

- Provides great flexibility and extensibility in accommodating integrated services: Voicemail, audio/video conferences.
- Packet switching, not circuit switching; network usage is much more efficient
- Technologies of multicast or multipoint communication.
- Support various degrees of QoS
 - Good graphics user interfaces

Internet telephony is not simply a streaming media service over the internet, it requires a sophisticated signaling protocol:

H.323 or SIP	
RTP, RTCP, RSVP, R	TSP
Transport Layer (UDP,	ТСР)
Network Layer (IP, IP Multicast)	
Data Link Layer	
Physical Laver	

H.323: A standard for packet-based multimedia communication services over networks, don't provide a guaranteed QoS.

- Call Setup: The caller sends the (GateKeeper, GK) a request message, the GK may either grant permission or reject the request.
- **Capability Exchange:** An H.245 control channel is established to exchange capabilities of both the caller and callee.

□ H.323 signaling and control

- H.255: Call control protocol, including signaling, registration, admissions, packetization and so on
- H.245: Control protocol for multimedia communications. (opening and closing channels for media streams...)
- **H.235:** Security and encryption for H.323

□ Audio Codecs:

- G.711: Codec for 3.1kHz audio over 48,56,64 kbps channels.
- G.722: Codec for 7kHz audio over 48,56,64 kbps channels.
- G.723.1: Codec for 3.1kHz, audio over 5.3,6.3 kbps channels.
- G.728: Codec for 3.1kHz, audio over 16kbps channels.
- G.729, G.729a: Codec for 3.1kHz, audio over 8kbps channels.

□ Video Codecs:

- **H.261:** Codec for video at p*64 kbps $(p\geq 1)$
- H.263: Codec for low-bitrate video (<64kpbs)

Related Standards

- H.320: The original standard for videoconferencing over ISDN networks
- H.324: An extension of H.320 for video conferencing over the GSTN
- **T.120: Real-time data and conferencing control**

H.323 Protocol Stack:

Control		Data	Audio Video		Audio / Video Control	
H.255 (Q.931)	H.245	T.120	G.7xx	H.26x	RTCP	
			R	RTP		RAS
ТСР			UDP			
IP						
LAN						
H.323 Protocol Stack						

Fundamentals of Multimedia 40

Session Initiation Protocol (SIP)

- SIP is an application layer control protocol in charge of establishing and terminating sessions in Internet telephony.
- SIP is not limited to VOIP, it's also used for multimedia conferences and multimedia distribution.
- Similar to HTTP, SIP is a text-based protocol that is different from H.323.
- 3 types of SIP severs:
 - Proxy Server
 - Redirect Server
 - Location Server

The methods for clients to invoke are:

- INVITE: invites callee(s) to participate in a call
- ACK: acknowledges the invitation
- OPTIONS: inquires about media capabilities without setting up a call.
- CANCEL: terminates the invitation
- BYE: terminate a call
- REGISTER: sends user's location information to a registrar (a SIP server)

- Session Description Protocol (SDP): describes multimedia sessions in textual form.
 - Number and types of media streams (audio, video, whiteboard, etc)
 - Destination addresses (Uicast or Multicast)
 - Sending and receiving port numbers
 - Media formats (Payload Types)

3. Media-On-Demand

Fundamentals of Multimedia &13 Multimedia Network Communication 44

3.1 Interactive TV (ITV) and Set-Top Box (STB)

Interactive TV is a multimedia system based on the television set in homes, support a growing number of activities:

- TV (basic, subscription, pay-per-view)
- Video-on-Demand (VOD)
- Information services (news, weather, magazines, sports events, etc)
- Interactive entertainment (Internet games, etc)
- E-commerce (online shopping, stock trading)
- Access to digital libraries and educational materials

.....

Network

Media Laboratory

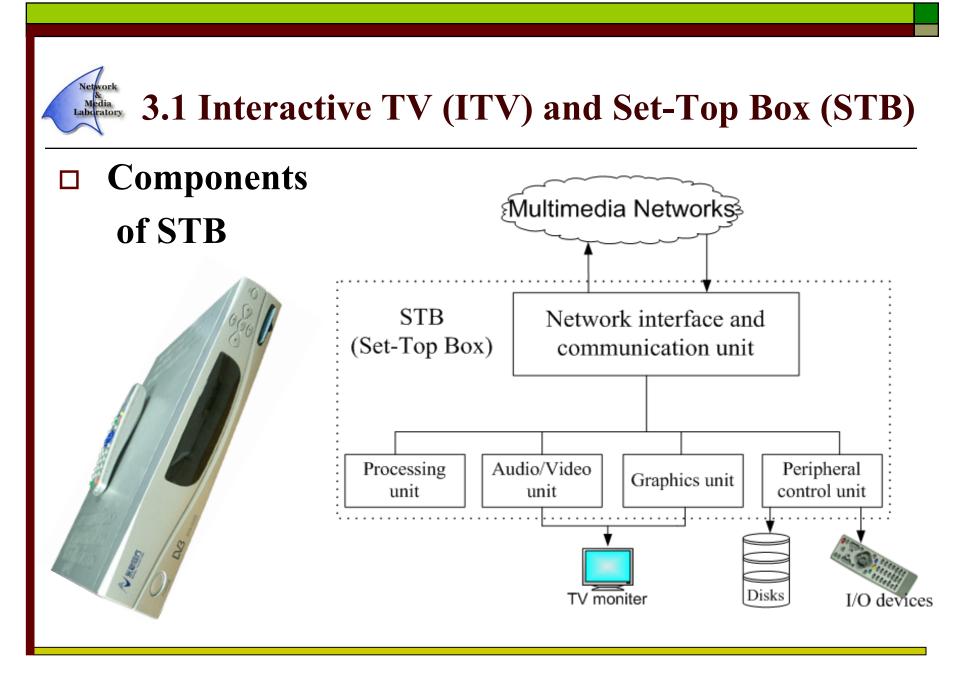
3.1 Interactive TV (ITV) and Set-Top Box (STB)

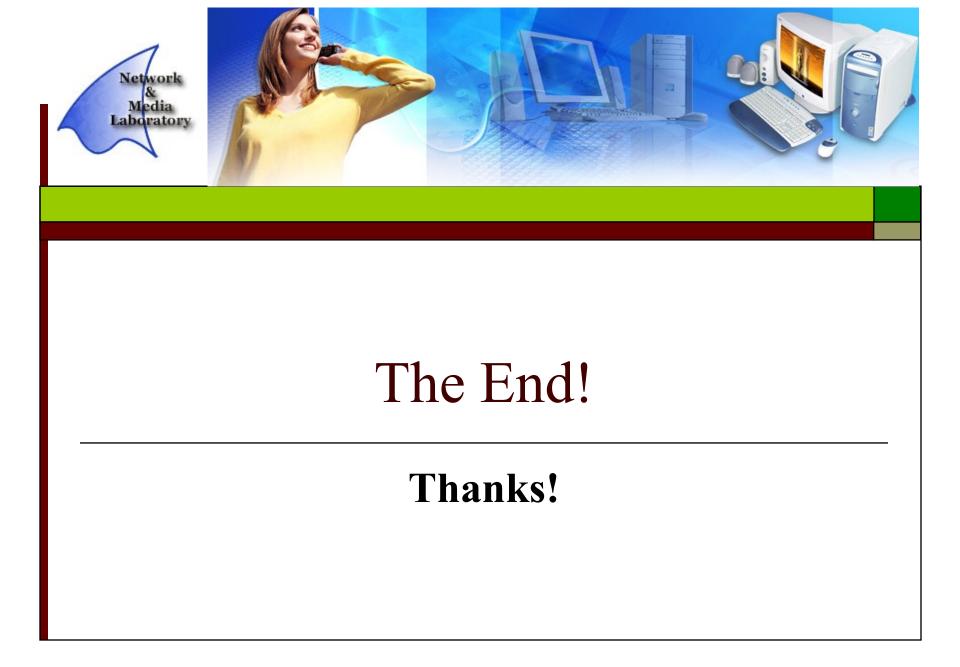
Interactive TV techniques:

Network

Media Laboratory

- DVB (Digital Video Broadcasting)
- Multimedia Home Platform
- Set-top Box, support bidirectional communications for Interactive TV.


3.1 Interactive TV (ITV) and Set-Top Box (STB)


Components of STB :

Network

Media Laboratory

- Network interface and communication unit: tuner, demodulator, security devices and so on.
- Processing unit: CPU, memory, operating system.
- Audio/video unit: MPEG-2,4 decoders, DSP, D/A converters.
- Graphics unit: supporting real-time 3D graphics
- Peripheral control unit: controllers for disks, I/O devices, CD/DVD reader and writer and so on.

Fundamentals of Multimedia &13 Multimedia Network Communication 49