

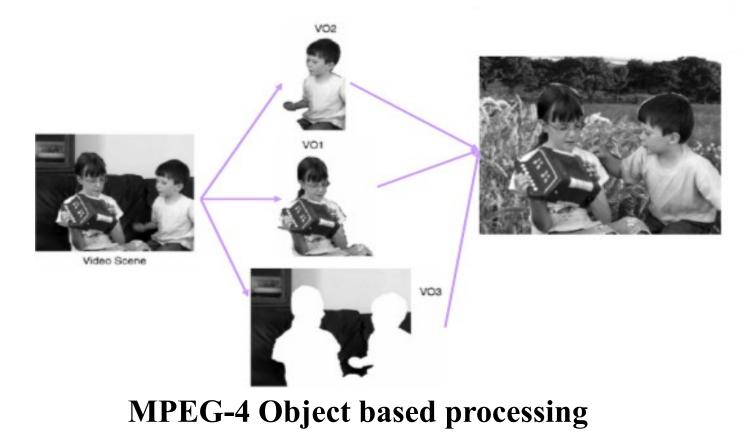
11. MPEG Video Coding (II)

MPEG-4, 7 and Beyond

- □ MPEG-4
 - Overview of MPEG-4
 - Object-Based Visual Coding In MPEG-4
 - Synthetic Object Coding In MPEG-4
 - Object Types, Profiles and Levels
 - MPEG-4 Part10/H.264
- **MPEG-7**
- **MPEG-21**

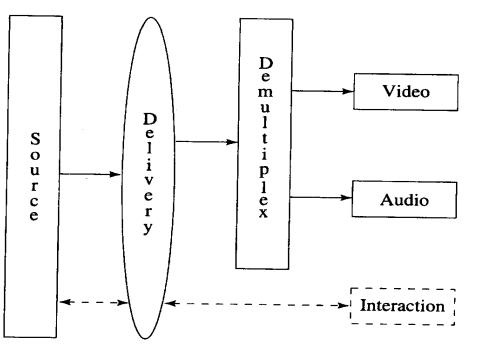
1. MPEG-4

□ MPEG-4

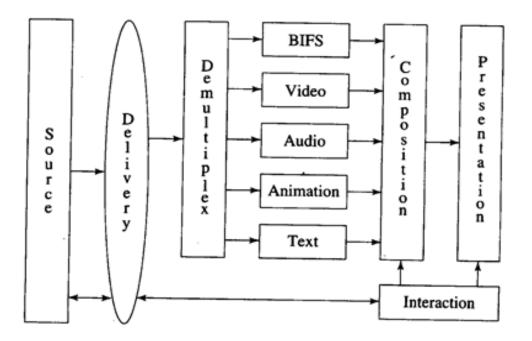

- Pays great attention to User Interactivities
- The bitrate covers a large range between 5kbps and 10Mbps.

Some characters

- Object based coding
- Arbitrary Shape Coding
- Static texture coding
- Face object coding and Animation
- Body object coding and Animation


Object based coding

Comparison of interactivities in MPEG standards. (a)


Reference models in MPEG-1 and 2

Interaction in dashed lines supported only by MPEG-2

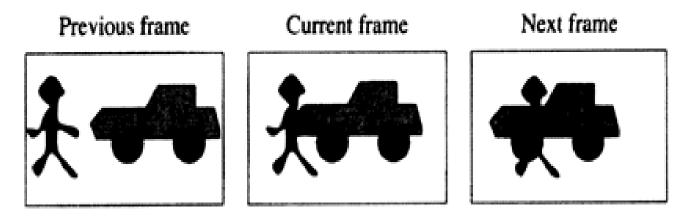
Comparison of interactivities in MPEG standards. (b) MPEG-4 reference model

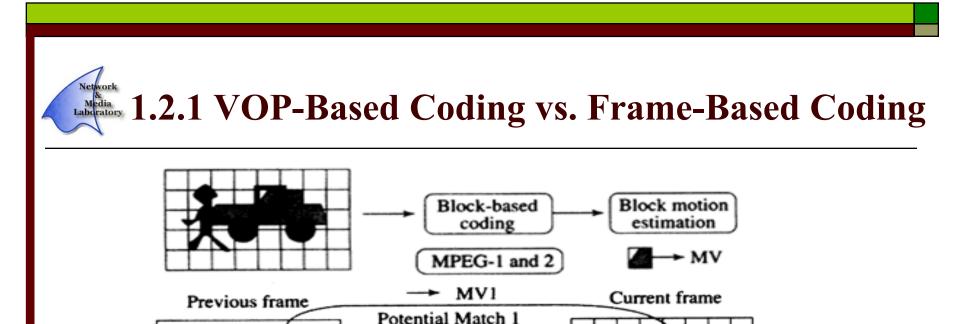
Hierarchical structure of MPEG-4 bitstreams

- Video-object Sequence (VS)
- Video Object (VO)
- Video Object Layer (VOL)
 - □ Scalable coding
- Group of Video Object Planes (GOV)
 - **Optional level**
- Video Object Plane (VOP)
 - **Snapshot of a VO at a particular moment**

VS
VO
VOL
GOV
VOP

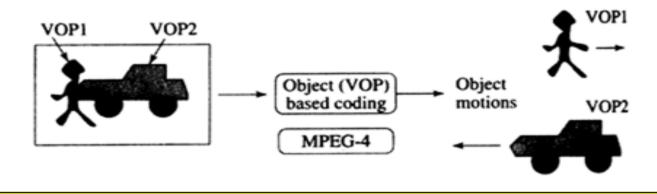
1.2 Object-based visual coding


- VOP-Based Coding vs. Frame-Based Coding
- Motion Compensation
- **Texture Coding**
- Shape Coding
- Static Texture Coding
- Sprite Coding


Global Motion Compensation

1.2.1 VOP-Based Coding vs. Frame-Based Coding

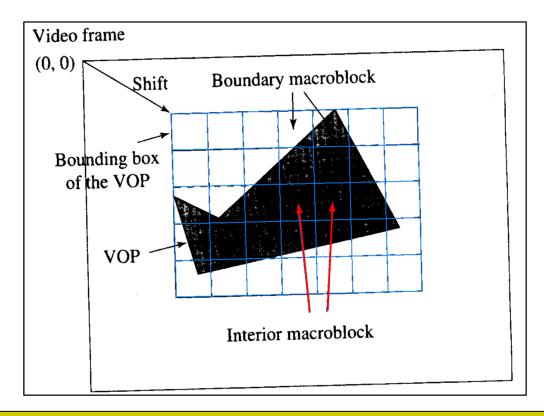
MPEG-1 and MPEG-2 are Frame-Based Coding

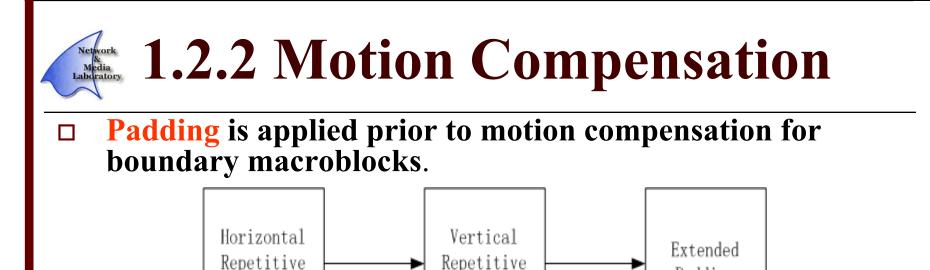

Motion vectors generated by frame-based coding may be inconsistent with the object's motion

Potential Match 2

MV2

Network & Media Laboratory


1.2.2 Motion Compensation


- Motion estimation
- Motion-compensation-based prediction
- Coding the prediction error
 - Defines a rectangular bounding box for each VOP
 - Interior macroblocks and boundary macroblocks

Network & Media Laboratory

1.2.2 Motion Compensation

Motion compensation for interior macroblocks is carried out in the same manner as in MPEG-1 and 2

Padding

The horizontal padding examines each row and every

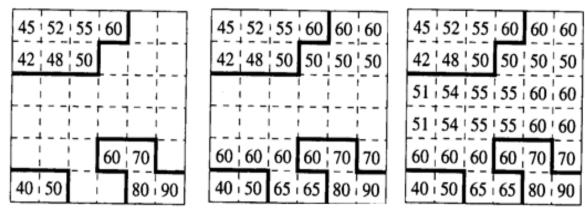
If the interval is bounded by two boundary pixel, their

boundary pixel is replicated to the left and/or right to fill

Padding

average is adopted;

the values out side the VOP.


The vertical padding works similarly.

Padding

Network & Media Laboratory

1.2.2 Motion Compensation

Padding (an example) П

Original Image

Horizontal Padding Vertical Padding

- Extended Padding: exterior macroblocks immediately next to boundary macroblocks are filled by replicating the values of the border pixels of the boundary macroblock.
- The macroblocks to use follows a priority list: П left, top, right, bottom

Network & Media Laboratory

1.2.2 Motion Compensation

Motion Vector Coding

Motion estimation

$$\begin{split} &SAD(i,j) = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} |C(x+k,y+l) - R(x+i+k,y+j+l)| \cdot Map(x+k,y+l) \\ &Map(p,q) = 1 \text{ if } C(p,q) \text{ is pixel in VOP} \\ &\text{else} \qquad Map(p,q) = 0 \\ &\text{motion vector } MV : (u,v) = |(i,j)| \cdot SAD(i,j) \text{ is minimum} \\ &i, \quad j \in [-p,p] \}, p \text{ is maximum of u and } v \end{split}$$

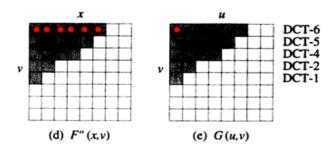
- Allows quarter-pixel precision in the luminance components.
- MV can point beyond the boundaries of the reference VOP, pixel outside the VOP is defined in padding step.

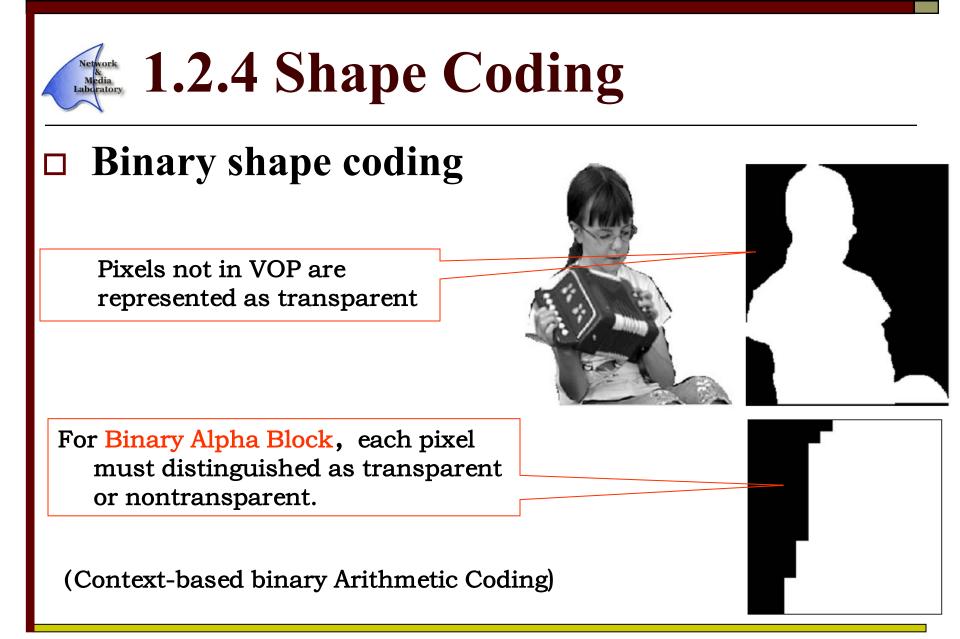
Media: 1.2.3 Texture Coding

- I-VOP coded like JPEG
- **For P-VOP and B-VOP**
 - The prediction error is sent to DCT and VLC
- Texture coding based on DCT
 - For portions of the boundary macroblocks outside the VOP, zeros are padded
 - Quantization step_size for the DC component is 8
 - **Two methods** can be employed for the AC coefficients
 - **H.263 method, all coefficients receive the same quantizer**
 - MPEG-2 method, DCT coefficients in the same macroblock can have different quantizers.

Shape-Adaptive DCT-based coding for boundary macroblocks.

DCT-N transform and its inverse and IDCT-N


$$\begin{split} & 1D \quad (DCT - N) \\ & F(u) = \sqrt{\frac{2}{N}} C(u) \sum_{i=0}^{N-1} \cos \frac{(2i+1)u\pi}{2N} f(i) \\ & 1D \quad (IDCT - N) \\ & \tilde{f}(i) = \sum_{u=0}^{N-1} \sqrt{\frac{2}{N}} C(u) \cos \frac{(2i+1)u\pi}{2N} F(u) \\ & \text{where} \quad i = 0, 1, \cdots, N-1; u = 0, 1, \cdots, N-1 \\ & C(u) = \begin{cases} \sqrt{\frac{2}{2}} & \text{if } u = 0 \\ 1 & \text{otherwise} \end{cases} \end{split}$$


Texture coding for boundary macroblocks using Shape-Adaptive DCT

At decoding time, a binary mask of the original shape is required

1.2.4 Shape Coding

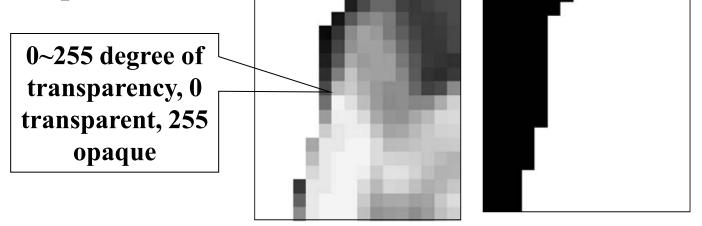
Binary shape coding

1. Calculate the current context value X

Each pixel is binary, context X is calculated according to 10 pixels already coded.
X has 10bits: C9C8C7C6C5C4C3C2C1C0
X is range in 0~1024
Lookup tables (MPEG-4 standard) to get the corresponding value.

c9 c8 c7 c6 c5 c4 c3 c2 c1 c0 X X

2. Arithmetic Coding


The value in the lookup table indicate the **probability of occurrence** for each of the 1024 contexts.

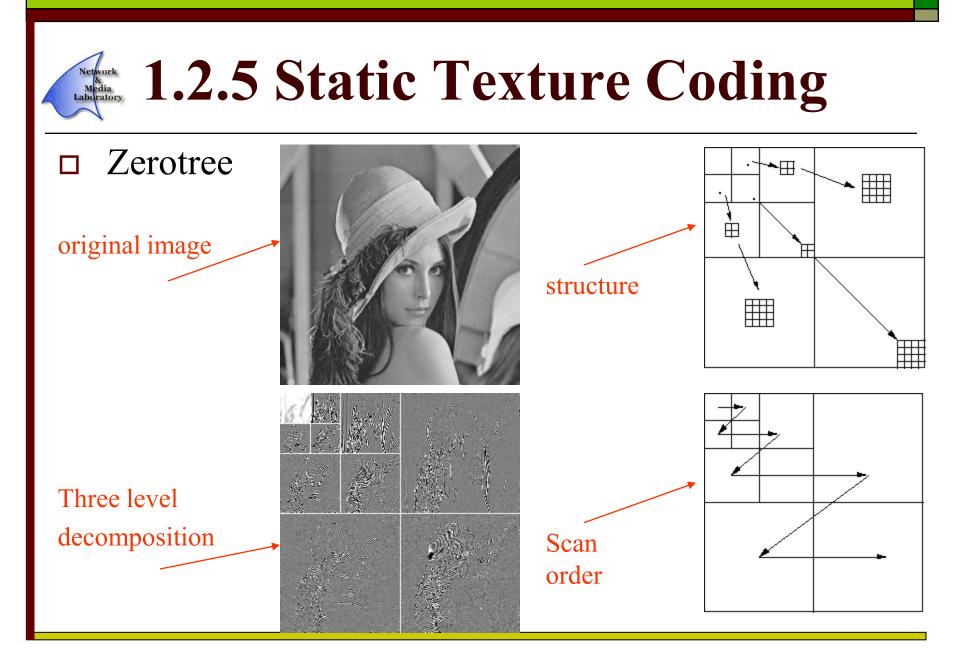
Context (binary)	Context (decimal)	Description	P(0)
0000000000	0	All context pixels are 0	65267/65535 = 0.9959
0000000001	1	c_0 is 1, all others are 0	16468/65535 = 0.2513
1111111111	1023	All context pixels are 1	235/65535 = 0.0036

Grayscale shape coding

Grayscale is used to describe the transparency of the shape, not the texture.

- Raster graphics uses extra bitplanes for an alpha map.
- Grayscale shape coding is lossy, while binary shape coding is lossless

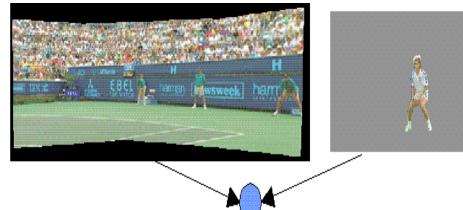
Reduced Andrew 1.2.5 Static Texture Coding

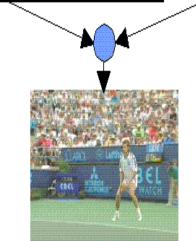

Wavelet coding for the texture of static objects

- □ The sub-bands with the lowest frequency are coded using DPCM
 - Prediction of each coefficient is based on three neighbors
- Other sub-bands are based on a multiscale zerotree wavelet coding.

LEDGERENCE 1.2.5 Static Texture Coding

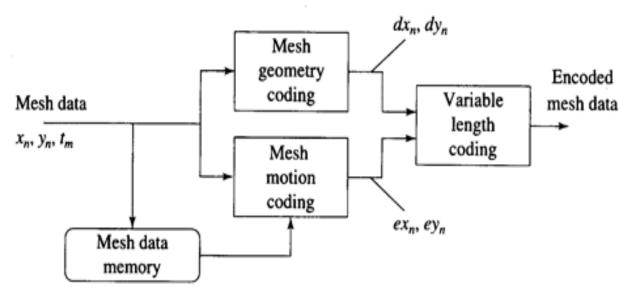
Wavelet coding for the texture of static objects (Cont.)


- The multiscale zerotree has a parent-child relation tree (PCR) for each coefficient in the lowest frequency subband
 - The location information of all coefficients is better used.
- □ A large quantizer is used at first
 - Difference is coded in the next iteration in which a smaller quantizer is employed.
- □ The most significant coefficients are coded using arithmetic coding.



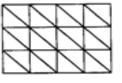
1.2.6 Sprite Coding

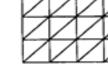
- Some background can be treated as static image
- Foreground is effected by camera movement

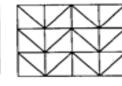

- Background can coded separately
- Foreground objects can be used to create flexible object-based composition of MPEG-4 video

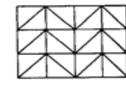
Media 1.2.7 Global Motion Compensation

- Camera motion such as pan, tilt, rotation, and zoom often cause rapid content change between successive frames, block-based motion compensation is not a efficient method for this situation
- **GMC** is a better choice
- **Global Motion Compensation has four major components**
 - Global motion estimation
 - Warping and blending
 - Motion trajectory coding
 - **Choice of local motion compensation (LMC) or GMC**


- Synthetic object: objects are created using computer
- **D** 2D Mesh Object Coding




2D Mesh Object Plane (MOP) encoding process.


D 2D Mesh Object Coding

2D Mesh Geometry Coding

(a) Type 0

(b) Type 1

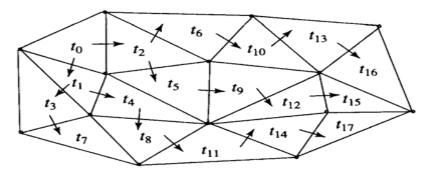
(c) Type 2

(d) Type 3

Four types of uniform meshes

Delaunay mesh is a better object mesh representation

- Select boundary nodes of the mesh
- **Choose interior nodes**
- Perform Delaunay Triangulation


D Mesh Object Coding

Network & Media Laboratory

- 2D Mesh Motion Coding
 - □ For any MOP triangle i, j, k. if motion vectors for i, j are known, then motion vector for k can be predicted as
 Drade 0.5(Drad + Drad)

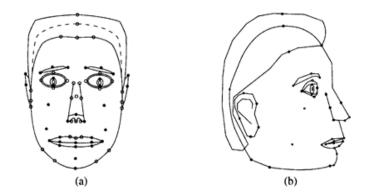
 $Pred_k = 0.5(Pred_i + Pred_j)$

□ When motion vectors of a triangle is coded, uncoded vertex of the neighboring MOP triangle share an edge with the previous triangle is coded, and so on, until all the triangles are coded.

D 2D Mesh Object Coding

Network & Media Laboratory

- 2D Object Animation
 - □ The previous step established a one-to-one mapping between the mesh triangle in the reference MOP and the target MOP
 - □ Affine transform is used to achieve animated sequence



3D Model-based Coding

Network & Media Laboratory

Face Object Coding and Animation

- Face models can either be created manually or through computer techniques, the former is cumbersome and inadequate, the latter is not reliable enough.
- MPEG4 defines 68 Face Animation Parameters (FAPs) to achieve a face model.

3D Model-based Coding

Body Object Coding and Animation

□ There are 296 body animation parameters (BAPs), The coding of BAPs is similar to that of FAPs.

1.4 MPEG4 Object Types, Profiles and Levels

 Like MPEG2, MPEG4 defines many profiles and levels: Visual profiles, Audio profiles, Graphics profiles, Scene description profiles, Object descriptor profiles

MPEG4 defines the tools needed to create video objects and the ways they can be combined in a scene

Network

Media Laboratory

Tools	Object types					
	Simple	Core	Main	Simple	N-bit	Scalable
				scalable		Still texture
Basic MC-based Tools	*	*	*	*	*	
B-VOP		*	*	*	*	
Binary shape coding		*	*		*	
Gray-level shape coding			*			
Sprite			*			
Interlace			*			
Temporal scalability(P-VOP)		*	*		*	
Spatial and temporal scalability				*		
(rectangular VOP)						
N-bit					*	
Scalable still texture						*
Error resilience	*	*	*	*	*	

Tools for MPEG-4 natural visual object types

1.4 MPEG4 Object Types, Profiles and Levels

Object types and levels in different profiles

Profile	level	Typical Picture size	Bitrate (bits/sec)	Max number of objects
Simple	1	176×144(QCIF)	64K	4
	2	352×288(CIF)	128K	4
	3	352×288(CIF)	384K	4
Core	1	176×144(QCIF)	384K	4
	2	352×288(CIF)	2M	16
Main	1	352×288(CIF)	2M	16
	2	720×576(CCIR6	501) 15M	32
	3	1920×1080(HD7	FV) 38.4M	32

Network

Media Laboratory

MPEG-4 natural visual object types and Profiles						
Object	Profiles					
Types	Simple	Core	Main	Simple	N-bit	Scalable
				Scalable		Texture
Simple	*	*	*	*	*	
Core		*	*		*	
Main			*			
Simple scalable				*		
N-bit					*	
Scalable still texture			*			*

MPEG4 Natural Visual Object Types and Profiles

Levels in Simple, Core, and Main Visual Profiles

1.5 MPEG-4 Part10/H.264

- 2001, MPEG and ITU-T VCEG (Video Coding Experts Group) united JVT (Joint Video Team)
- □ JVT proposed H.264 draft to ISO in 2003
- H.264 offers up to 50% better compression than MPEG-2 and up to 30% better than H.263+ and MPEG-4 advanced simple profile

NETWORK 1.5 MPEG-4 Part10/H.264

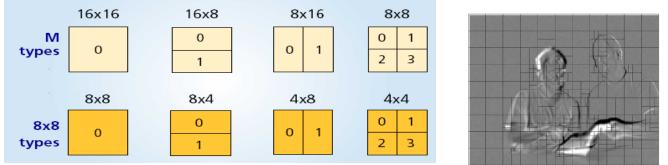
Core Features

- Entropy decoding
 - Unified-VLC(UVLC) and Context Adaptive VLC (CAVLC)
- Motion compensation or intra-prediction
 - □ Variable block size and more accurate motion compensation.
- Transform, Scan, Quantization
 - Nonlinear quantization and different quantization scales
- I-Prediction
 - Intra-coded macroblocks are all predicted using neighboring reconstructed pixels
- In-loop Deblocking Filters
 - □ Adopts a sophisticated signal-adaptive deblocking filter.

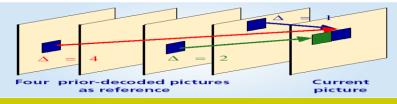
1.5 MPEG-4 Part10/H.264

Deblocking Filter in H.264 can obtain pleasing results

Non Deblocking


After Deblocking

Network & Media Labdratory


1.5 MPEG-4 Part10/H.264

Inter prediction

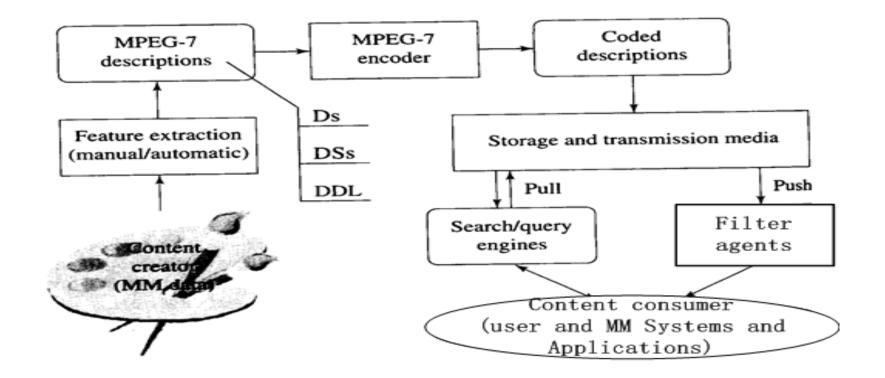
- Tree-structured Motion Compensation
- H.264 supports different block size, block size can down to 4*4

- Select the optimal block size, minimize the difference between current an reference frame.
- P frame can use more than one previous frames as reference frames.

2. MPEG-7

Network Media Abdratory Overview of MPEG-7(1)

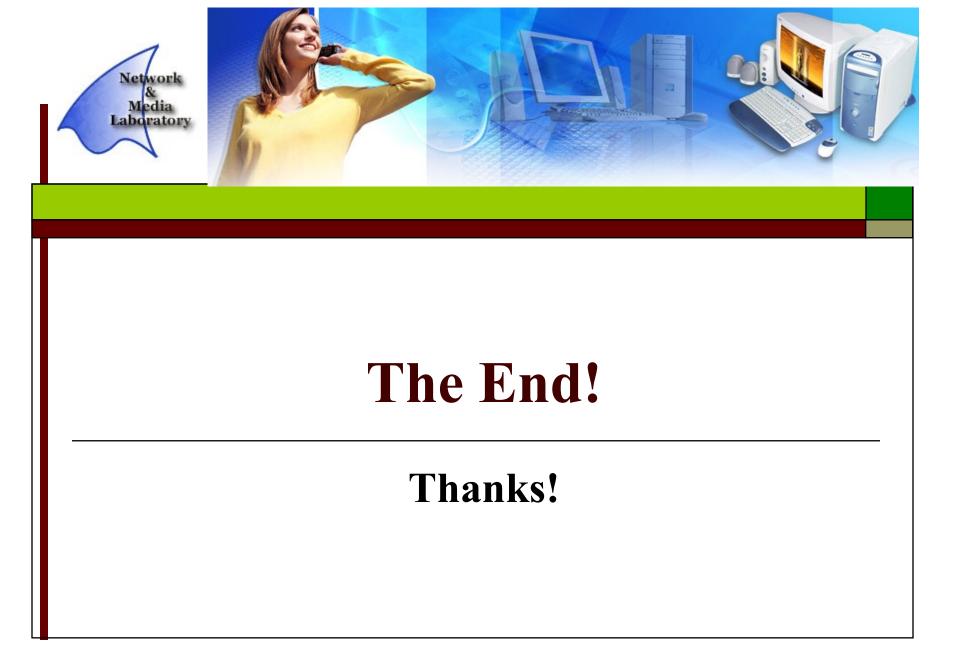
- More and more multimedia content becomes an integral part of various applications, effective and efficient retrieval becomes a primary concern.
- □ MPEG7 is to satisfy the need of audiovisual content-based retrieval.
- □ MPEG7 was initialized in 1998, finished in 2001.
- □ MPEG7 supports a variety of multimedia applications.
- MPEG7 doesn't describe any feature extracting methods. Its formal name is "multimedia content description interface".


Network Overview of MPEG-7(2)

MPEG-7

- Descriptors (D), Description Schemes (DS),
- Description Definition Language(DDL)
- **Descriptor (D)**
 - Color, Texture, Shape, motion, localization
- Description Schemes (DS)
 - Basic elements, content management, content description, navigation and access
- **XML Schema Language and MPEG7 Extensions**

Applications using MPEG7



3. MPEG-21

Network Media Laboratory Overview of MPEG-21

- MPEG-21 is to define a uniform way to define, identify, describe, manage, and protect multimedia data.
- MPEG21 has 7 key parts
 - Digital item declaration
 - Digital item identification and description
 - Content management and usage
 - Intellectual property management and protection
 - Terminal and networks
 - Content representation
 - Event reporting

