

10. MPEG Video Coding 1

MPEG-1 and MPEG-2

Fundamentals of Multimedia &10 MPEG-1 and 2 2

MPEG

Moving Pictures Experts Group, established in 1998 to delivery digital video and audio

□ Membership

From 25 experts in 1988, to more than 350 experts from about 200 companies

□ MPEG-1

- Motion Compensation in MPEG-1
- Other Major Differences from H.261
- MPEG-1 Video Bitstream

□ MPEG-2

- Introduction
- Interlaced Video
- MPEG-2 Scalabilities
- Other Major Differences from MPEG-1

1. MPEG-1

Fundamentals of Multimedia &10 MPEG-1 and 2 5

Introduction of MPEG-1

1991 ISO/IEC

Network

Media Laboratory

- Coding of moving pictures and associated audio for Digital storage media at up to about 1.5Mbit/s
- **CDs and VCDs; 1.2M for Video and 256K for audio**
- **5 parts:** Systems, video, Audio, Conformance, software
- Adopt the CCIR601 digital TV format SIF (Source Input Format)
 - Support only non-interlaced Video
 - **352*240 for NTSC at 30 fps**
 - 352*288 for PAL at 25 fps
 - 4:2:0 chroma subsampling

1.1 Motion Compensation in MPEG-1

H.261, predicted by previous frame

Network

Media Laboratory

Forward Prediction

 Bidirectional Motion Compensation

1.1 Motion Compensation in MPEG-1

Each macro-block from B frame has two motion vectors

1.1 Motion Compensation in MPEG-1

B frame dependents on its succeeding P or I frame, so the play order is different from the coding order.

□ H.261

Network

Media Laboratory

- Supports only CIF(352×288), QCIF (176×144)
- □ MPEG-1
 - Supports SIF(352×240 for NTSC ,352×288 for PAL),
 - Allows specification of other formats

parameter	value
horizontal size	<=768
vertical size	<=576
macroblocks per image	<=396
macroblocks per second	<=9900
frame rate	<=30fps
bitrates	<=1,856kbps

□ H.261 has no GOP, Frame (Picture) is the highest layer.

MPEG-1 picture can be divided into one or more slices, each slice in coded independently.

Slices in an MPEG-1 picture

□ MPEG-1 uses different quantization tables for its intra-coding and inter-coding.

Network

Media Laboratory

□ The quantization numbers for intra-coding vary within a macroblock, which is different from H.261

8	16	19	22	26	27	29	34		16	16	16	16	16	16	16	16
16	16	22	24	27	29	34	37		16	16	16	16	16	16	16	16
19	22	26	27	29	34	34	38		16	16	16	16	16	16	16	16
22	22	26	27	29	34	37	40		16	16	16	16	16	16	16	16
22	26	27	29	32	35	40	48		16	16	16	16	16	16	16	16
26	27	29	32	35	40	48	58		16	16	16	16	16	16	16	16
26	27	29	34	38	46	56	69		16	16	16	16	16	16	16	16
27	29	35	38	46	56	69	83		16	16	16	16	16	16	16	16
Intra Quantization Table											Inte	r Qua	antiza	ation	Table	e

- □ MPEG-1 allows motion vectors to be of 0.5pixel.
- MPEG-1 supports larger gaps between I and P frames and larger motion-vector search range.
- MPEG-1 bitstream allows random access, accomplished by GOP layer.

Туре	Size	Compression
Ι	18kB	7:1
Р	бkB	20:1
В	2.5kB	50:1
Average	4.8kB	27:1

Typical compression performance of MPEG-1 frames

Network & Media Laboratory

1.3 MPEG-1 Video Bitstream

Network 1.3 MPEG-1 Video Bitstream

- Sequence layer
- Group of pictures (GOPs) layer
- D Picture layer:
 - I-,P-,B-,and an uncommon type, D-picture (DC coded)
- □ Slice layer
- Macroblock layer
- Block layer

Layers of MPEG-1 video bitstream

2. MPEG-2

Fundamentals of Multimedia &10 MPEG-1 and 2 17

- Started in 1990, for higher-quality video at a bitrate of more than 4 Mbps.
- Meets the compression and bitrate requirements of digital TV/HDTV
- Different resolutions, different compression complexities.
- □ Gained wide acceptance: terrestrial, satellite, cable network
- Other applications: Interactive TV, DVDs (digital video discs or digital versatile discs)

- MPEG-2 defined 7 profiles, aimed at different applications, up to 4 levels defined in each profile.
 - Simple, Main, SNR Scalable, Spatially Scalable, High, 4:2:2 and Multiview

Level	Maximum	Maximum	Maximum	Maximum coded	Application
		fps Pixels×10 ⁶ /sec I		Data rate(Mbps)	
High	19201152	60	62.7	80	Film production
High1440	1440×1152	60	47.0	60	Consumer HDTV
Main	720×576	30	10.4	15	Studio TV
Low	352×288	30	3.0	4	Consumer tape
					equivalent

Four levels in the main profile of MPEG-2 $\,$

Letter 2.2 Supporting Interlaced Video

- □ MPEG-2 supports SIF (352 × 288 × 25 or 30), HDTV(1920 x 1250 x 60) as input video format.
- Most of them are interlaced videos, each frame consists of two fields, each field is treated as a separate picture

Laborations 2.2 Supporting Interlaced Video

Five Modes of predictions

Frame prediction for frame-pictures

- Identical to Mpeg1 motion compensation
- Works well for videos containing slow and moderate object

Field prediction for field-pictures

- □ See figure in the next page
- Field prediction for frame-pictures
 - **Treat top field and bottom field separately**
- 16× 8 MC for field-pictures
 - **Good for motion is rapid and irregular**
- Dual-prime for P-pictures
 - **MV** is used to derive a calculated motion vector CV

1.2 Supporting Interlaced Video

Field prediction for field-pictures

Letter 2.2 Supporting Interlaced Video

Alternate scan and Field DCT

- Applicable only to frame-pictures in interlaced video.
- Alternate scan can improve the PSNR up to 0.3dB.

Scalability is important for different applications

- Defines a base layer and several enhancement layers
- Transmitted with very different characteristics
- Suitable for variable-bitrate (VBR) channels
- Bitstreams are sent first to give users basic view of the video

- Typical Methods
 - SNR scalabilities
 - Spatial scalabilities
 - Temporal scalabilities
 - Data partitioning

Media 2.3 MPEG-2 Scalabilities

- □ Scalable Coding: The basic layer provide basic video quality, enhancement layers provide better qualities.
- □ The base layer is encoded independently, enhancement layer depends on the base layer or the previous enhancement layer.

Enhancement Layer

Base Layer

□ SNR Scalability: A coarse quantization of the DCT coefficients is employed at the base layer, difference between the video reconstructed from base layer and the original forms enhancement layer.

□ SNR scalabilities (decoder)

Spatial Scalability

Spatial Scalability

Spatial Scalability

(b) Combining
temporal and spatial
predictions for
encoding at
enhancement layer

NETWORK 2.3 MPEG-2 Scalabilities

Temporal scalabilities

- Base and enhancement layers at reduced frame rate
- Prediction of matching macroblocks at the enhancement layer can be obtained in two ways:
 - interlayer motion-compensated prediction
 - **combined** motion-compensated prediction and interlayer motioncompensated prediction

Media 2.3 MPEG-2 Scalabilities

Pictures from base layer and enhancement layers have the same spatial resolution as the input.

Temporal scalability

1, 3, 5, 7 etc. odd frames as base layer, even frames as enhancement layer.

Base layer encoded as ordinary video, usually has I and P frame types.

Frames in enhance layer can take frames at base layer or its own layer as references

Interlayer motion-compensated prediction

Combined motion-compensated prediction and interlayer motioncompensated prediction

Strictly speaking, data partition doesn't conduct scalable coding. it divided video into two partitions according to their importance.

□ Illustration of data partitioning

Base Layer

Base Layer + Enhancement Layer

2.4 Other Major difference from MPEG-1

- Better resilience to errors
- Support of 4:2:2 and 4:4:4 chroma subsampling
- Nonlinear restricted structure

Possible nonlinear scale in MPEG-2

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
scale _i	1	2	3	4	5	6	7	8	10	12	14	16	18	20	22	24
i	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
scale _i	28	32	36	40	44	48	52	56	64	72	80	88	96	104	112	

- More restricted slice structure
- More flexible video formats

