

9、Basic Video Compression Techniques

- Introduction to video compression
- Video compression based on motion compensation
- Search for motion vectors
- □ H.261
- □ H.263

1. Introduction to Video Compression

Fundamentals of Multimedia &9 Basic Video Compression 4

Requirement of video compression

- Uncompressed video data could be extremely large
- Pose some problems for network communication

□ **Feasibility** of video compression

- Frames in the same scene are very similar, so video data have temporal redundancy
- Even static images can be compressed at large compression ratio, say nothing of video

- Video is a sequence of images stacked in the temporal dimension
- □ The most simple method: Predictive Coding
 - Subtract images in time order
 - Code the residual error
- **Better methods**
 - Search for the right parts of the image to subtract from the previous frame.
 - Motion Estimation
 - Motion Compensation

1.1 Temporal Redundancy

□ A video: a sequence of images in temporal dimension

- Consecutive frames are usually similar
 - The video has significant temporal redundancy
 - Not every frame coded independently
 - Difference between adjacent frames are coded
- □ **Main cause of difference** between frames
 - Camera or object motion
- Motion generators can be compensated
 - Detecting the displacement of corresponding pixels or regions
 - Measuring their differences (motion compensation MC)

1.1 Temporal Redundancy

□ **Both spatial and temporal redundancy** exist in moving sequential pictures

- Principles of moving pictures encoding : reduce spatial redundancy and temporal redundancy
 - Intra-Frame: similar as JPEG
 - Inter-Frame: based on motion prediction and compensation
 - □ P frame、 B frame
 - □ Multi-frame references (H.264)

2.2 Motion Compensation

- □ The three main steps
 - Motion estimation: motion vector search
 - Motion-compensation-based prediction
 - Derivation of the prediction error
- Unit of motion compensation
 - Macroblocks of size N×N
- □ MV (Motion Vector):
 - Displacement of the reference block to the target macroblock
- Video compression based on motion compensation
 - Only motion vectors and difference macroblocks need to be coded except the first frame

3. Search For Motion Vectors

Fundamentals of Multimedia &9 Basic Video Compression 12

3.1 Criteria of matching

- Motion Vector (MV) search: a matching problem, called correspondence problem
- □ Horizontal and vertical displacement i, j are in the range [-p, p], a search window of size (2p+1) * (2p+1)
- □ The goal: find (i, j) minimize the distance between two macroblocks

C(x+k, y+l): pixel in target frame macroblock R(x+i+k, y+j+l): pixel in reference macroblock when motion vector is(i, j)

 $MAD(i, j) = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} |C(x+k, y+l) - R(x+i+k, y+j+l)|$

 $(u,v) = [(i,j) | MAD(i,j) \text{ is minimum, } i \in [-p,p], j \in [-p,p]]$

3.1 Criteria of matching

Media 3.2 Sequential Search

- □ The simplest MV search method, search the whole (2p+1)*(2p+1) window in reference frame, referred to as Full Search
- □ Sequential search:

```
Begin
    Min MAD=Large Number;
        for i= -p to p
                 for j=-p to p
                 { cur MAD = MAD(i,j);
                    If(cur MAD<Min MAD
                   { min MAD = cur MAD;
                     u=i;
                     v=j;
    End
    The sequential search is very costly;
the cost for a macroblock : (2p+1) * (2p+1) * N*N*3 => O(p^2N^2)
```

3.3 2D-Logarithmic-search

 A cheaper version : suboptimal but effective
 Logarithmic Search procedure: Begin

offset= $\left\lceil \frac{p}{2} \right\rceil$

Specify nine macroblocks within the search window, they are centered at (x0, y0) and separated by offset horizontally and/or vertically;

```
while last!=TRUE
```

find the macroblocks yields minimum MAD;

```
if offset=1 then last=TRUE;
```

offset = $\left\lceil \frac{offset}{2} \right\rceil$

Form a search region with the new offset and new center found;

Find

{

3.3 2D-Logarithmic-search

D 2D Logarithmic search for motion vectors:

Network 3.4 Hierarchical Search

Motion vector obtained from images with significantly reduced resolution

Begin

End

// Get macroblock center position at lowest resolution level k

 $x_0^k = x_0^0 \, / \, 2^k; y_0^k = y_0^0 \, / \, 2^k;$

Use sequential (or 2D logarithmic) serch to get initial estimated $\mathrm{MV}(\mathbf{u}^{\mathbf{k}}\!,\!\mathbf{v}^{\mathbf{k}}\!)$ at level k WHILE last != TRUE

```
Find one of the nine macroblocks that yields minimum MAD

(2(x_0^k + u^k) - 1 \le x \le 2(x_0^k + u^k) + 1, \quad 2(y_0^k + v^k) - 1 \le y \le 2(y_0^k + v^k) + 1;
if k=1 then last = TRUE;

k=k-1;

Assign (x_0^k, y_0^k) and (u^k, v^k) with the new center location and motion vectors

}
```

Media 3.4 Hierarchical Search

Hierarchical search for motion vectors

- Search of motion vector is one of major steps in video compression, many methods are proposed to improve the efficiency.
- Some methods are listed as follows:
 - Three Step Search: TSS
 - Conjugate Direction Search: CDS
 - Cross Search Algorithm: CSA
 - New TSS: NTSS
 - Four-Step Search: FSS
 - Diamond Search Algorithm: DS
 - Adaptive Block Matching Algorithm: ABMA

4. H.261

Fundamentals of Multimedia &9 Basic Video Compression 21

Media 4.1 Overview of H.261

- H.261 is an earlier digital video compression standard.
 Initiated in 1988 by CCITT, formed in 1990
- Designed for videophone, videoconferencing and other audiovisual services over ISDN
- □ Requires the video encoders delay less than 150msec.

Video	Luminance image	Chrominance image	Bitrate(Mbps)	H.261	
format	resolution	Resolution	(if 30 fps and	support	
			Uncompressed)		
QCIF CIF	176×144	88×72	9.1	Required	
	352×288	176×144	36.5	Optional	

Video formats supported by H.261

4.1 Overview of H.261

- □ H.261 has two types of image frames:
 - Intra-fames (I-frames) and inter-frames (P-frames)
- I-frame is independent image
- P-frame depend on previous I-frame or P-frame
 - Remove temporal redundancy

4.2 Intra-Frame Coding

□ Macroblock for Y frame is of size 16*16 ;

□ Cb,Cr correspond to 8*8 block

4.3 Inter-Frame predictive Coding

- Encoding based on motion compression.
 - Prediction error is measured by difference macroblock;
- □ If prediction error exceed certain level, the macroblock itself is coded. (non-motion-compensated-macroblock)

4.3 Inter-Frame predictive Coding

- □ **Use reconstructed frame** as reference frame, not original frame.
- Reference frame can be previous I frame or P frame.
- The motion vector is not directly coded, predicted error is sent for entropy coding.

$$MVD = MV_{\text{Preceding}} - MV_{Current}$$

4.4 Quantization in H.261

- Quantization uses a constant (step_size) for all DCT coefficient in a macroblock, step_size is one of the even value from 2 to 62.
- In intra mode, step_size=8 is always used for DC coefficient.

$$QDCT = round(\frac{DCT}{step_size}) = round(\frac{DCT}{8})$$

□ For all other coefficients

$$QDCT = \left\lfloor \frac{DCT}{step_size} \right\rfloor = \left\lfloor \frac{DCT}{2 \times scale} \right\rfloor$$

□ scale is an integer in the range of [1, 31]

Media 4.5 H.261 encoder and decoder

Encoder and data flow

(a) Encoder

Current	Observation Point						
frame	1	2	3	4	5	6	
Ι	Ι			\widetilde{I}	0	\widetilde{I}	
P_1	P_1	P_1'	D_1	\widetilde{D}_1	P_1'	\widetilde{P}_1	
P ₂	P_2	P_2'	D_2	\widetilde{D}_2	P_2'	\widetilde{P}_2	

4.5 H.261 encoder and decoder

Decoder and data flow

4.6 H.261 Video Bitsteam Syntax

□ H.261 video bitsteam syntax : four layers

Picture, Group of Blocks, Macroblock and Block

Network & Media Laboratory

4.6 H.261 Video Bitsteam Syntax

In H.261, Frame (Picture) is the highest layer

4.6 H.261 Video Bitsteam Syntax

Syntax of H.261 video bitstream

- PSC (Picture Start Code)
- Ptype (Picture Type)
- **GBSC (GOB Start Code)**
- Gquant (GOB Quantizer) MB (Macroblock)
- Mquant (MB Quantizer)
- **CBP (Coded Block Pattern) EOB (End of Block)**

TR (Temporal Reference)

MVD (Motion Vector Data)

GOB (Group of Blocks)

GN (Group Number)

5. H.263

Fundamentals of Multimedia &9 Basic Video Compression 33

1 5.1 overview of H.263

- □ An improve standard for videoconferencing and other audiovisual services on PSTN, adopted by ITU-T Study Group 15 in 1995
- □ H.263 supports sub-QCIF, 4CIF和16CIF, GOBs don't have a fixed size.

Video	Luminance	Chrominance	HL 263	Bit-rate	Bitrate(kbps)
format	Image	Image	support	(Tbit/s)	BPPmaxKb
	Resolution	Resolution		(if	(compressed)
				uncompressed,	
				30 fps)	
SQCIF	128 x 96	64 x 48	Required	4.4	64
QCIF	176 x 144	88 x 72	Required	9.1	64
CIF	352 x 288	176 x 144	Optional	36.5	256
4CIF	704 x 576	352 x 288	Optional	146.0	512
16CIF	1408 x 1152	704 x 576	Optional	583.9	1024

Media 5.2 Motion Compensation in H.263

H.263 supports half-pixel positions which are generated by bilinear interpolation method.
 MV are predicted by median values

$$u_p = median(u_1, u_2, u_3),$$

$$v_p = median(v_1, v_2, v_3)$$

Media 5.2 Motion Compensation in H.263

Prediction at half pixel precision

- Use inner-interpolation to get half pixel vales
- Can reduce predicted errors

5.3 Optional H.263 Coding Modes

Negotiable options besides its core algorithm:

- Unrestricted motion vector mode.
- Syntax-based arithmetic coding mode
- Advanced prediction mode (4 MV for a macroblock)
- PB-frames mode

5.3 Optional H.263 Coding Modes

Unrestricted Motion Vectors

- Referenced not restricted by image boundary
- Fulfilled by enlarging the coding image edges for a certain size(e.g. macroblock size)

Current VOP

Current macroblock

Network 5.4 H.263+ and H.263++

- Second version of H.263
 - Redefine the unrestricted motion vector mode
 - Slice structure is used to replace GOB
 - Implements Temporal,SNR,and Spatial scalabilities
 - Supports improved PB-frames mode
 - Use deblocking filtersto reduce blocking effects
- □ H.263++: the new extension
 - Enhanced reference picture selection (ERPS)
 - Data partition slice (DPS)
 - Additional supplemental enhancement information

Fundamentals of Multimedia &9 Basic Video Compression 40