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1. Distortion Measures 
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1.1 Concept of Distortion 

 Distortion Measure  

 A mathematical quantity: specifies how close 

an approximation to its original 

 It’s nature to think of the numerical difference  

 When it comes to image data, difference may 

not yield the intended result 

 Measures of perceptual distortion 
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1.2 Numerical Distortion Measures 

 Many numerical distortion measures -- the most 
commonly used distortion measures are presented：MSE、
SNR、PSNR 

 Mean Square Error（MSE）： 

 

 Average pixel difference 

 Signal-to-Noise Ratio（SNR)： 

 

 The size of the error relative to the signal 

 Peak-Signal-to-Noise Ratio (PSNR)： 

 

 

 The size of the error relative to the peak value of the signal 
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1.2 Numerical Distortion Measures 

 Examples of  PSNR and corresponding images 

 

 

 

 

 
 

     original image                polluted by noise             processed by noise filter 

                                     PSNR=18.24            PSNR=39.5 
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2.The Rate-Distortion Theory 



Fundamentals of Multimedia    9 

2.1 Concept 

 Lossy compression always involves a tradeoff between 

rate and distortion 

 Rate -- the average number of bits required to represent each 

source symbol； 

 R(D) note rate-distortion function； 

 What is R(D)? 

 R(D) specifies the lowest rate at which the source data can be 

encoded while keeping the distortion bounded above by D 

 At D＝0, no loss, so is the entropy of the source data 

 Describe a fundamental limit for the performance of a coding 

algorithm 

 Can be used to evaluate the performance of different algorithm 
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2.2 A Typical R-D Function 

 A figure of a typical rate-distortion function 

 

 

 

 

 

 

 D＝0, the entropy of the source data 

 R(D)＝0, nothing coded 

 For a given source, it’s difficult to find a closed-form 

analytic description of the rate-distortion function 
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3. Quantization  
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3.1 Functions of Quantization 

 Quantization: the heart of any lossy scheme  

 Without quantization, almost no losing 

information 

 Reduce the number of distinct values via 

quantization 

 Each quantizer has its unique partition of 

the input range and the set of output values. 

 Scalar quantizer 

 Vector quantizer 
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3.2 Uniform Scalar Quantization 

 Uniform scalar quantizer 

 Partitions the input domain into equally spaced intervals 

 Decision boundaries: the end points of partition intervals 

 Output value: midpoint of the interval 

 Step size: the length of each interval  

 Two types of uniform scalar quantizer 

 midrise：with an even number of output levels, one partition 
interval brackets zero； 

 midtread：odd number of output levels, zero is an output value. 

 The goal of a successful uniform quantizer 

 Minimize the distortion for a given source input with a desired 
number of output values 
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3.2 Uniform Scalar Quantization 

 Given step size △＝1,output values for the 

two type of Quantizers be computed as： 

 

 Two types quantizers： 
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3.2 Uniform Scalar Quantization 

 Performance of a M level quantizer： 

 Decision Boundaries：B＝｛b0, b1, …, bM｝ 

 The set of output values：Y={y1, y2, …, yM} 

 The input is uniformly distributed：[-Xmax, Xmax] 

 The rate of quantizer:               is the number of bits 

required to code M things； 

 Step size is given by：∆＝2Xmax/M 

 Granular distortion: error caused by the quantizer 

for bounded input 

 Overload distortion: error caused by quantizer for 

input values larger than Xmax or smaller than -Xmax 

M
R

2
log
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3.2 Uniform Scalar Quantization 

 Granular distortion for a midrise quantizer 

 Decision boundaries bi:[(i-1)∆, i∆ ], i=1..M/2,  covering 

positive data X (another for native X values)  

 Output values yi：i∆-∆/2，i=1..M/2 

 The total distortion: twice the sum over the positive 

data： 

 

 

 The error value at X is e(x)=x-∆/2, variance of errors： 
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3.2 Uniform Scalar Quantization 

 Signal  variance                     ；if the quantizer is n 

bits，M＝2n 

 SQNR can be calculated as： 
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3.3 Nonuniform Scalar Quantization 

 If the input source is not uniformly distributed, a uniform 
quantizer may be inefficient. 

 Increasing the number of decision levels within the 
densely distributed region can lower granular distortion 

 Enlarge the region where the source is sparsely 
distributed can keep the total number of  decision levels 

 So nonuniform quantizers have nonuniforumly defined 
decision boundaries. 

 Two common approaches for nonuniform quantization： 

 The Lloyd-Max Quantizer 

 The companded quantizer 
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4. Transform Coding 
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4.1 Basic Idea 

 According principles of information theory 

 Coding vectors is more efficient than coding scalars 

 Need to group consecutive samples from input into vectors 

 Let X=｛x1, x2, …, xk｝be vector of samples, there’s an  
amount correlation among neighboring. 

 If Y is the result of a linear transform T of the input 
vector and its components have much less correlation, 
then Y can be coded more efficiently than X. 

 The transform T itself does not compress any data.  

 The compression comes from the processing and quantization of 
the components of Y.  

 DCT is a widely used transform, it can perform de-
correlation of the input signal. 
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4.2 Discrete Cosine Transform (DCT) 

 1D Discrete Cosine Transform： 

 

 1D Inverse Discrete Cosine Transform: 

 

 

 

 2D transform can be used to process 2D signals 

such as digital images 
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4.2 Discrete Cosine Transform (DCT) 

DCT（2D）Definition： 

 Given a function f(i, j) over an image，the 2D DCT 

transforms it into a new function F(u,v), integer u 

and v running over the same range as i and j. 

 The general definition of the DCT transform is： 
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4.2 Discrete Cosine Transform (DCT) 

 In the JPEG image compression standard 

 An image block is defined to have dimension M=N=8； 

 The definition of 2D DCT and its inverse IDCT are as 

follows： 

 2D Discrete Cosine Transform(2D DCT)： 

 

 2D Inverse Discrete Cosine Transform(2D IDCT)： 
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4.2 Discrete Cosine Transform (DCT) 

 DCT related concepts 

 Direct current (DC) and alternating current (AC) 

 Represent constant and variable magnitude respectively； 

 

 Fourier analysis  

 Any signal can be expressed as a sum of multiple signals that 

are sine or cosine wave forms. 

 An signal usually composed of one DC and several AC 

components； 

 Cosine Transform 

 The process used to determine the amplitude of the AC and 

DC components of the signal. 
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4.2 Discrete Cosine Transform (DCT) 

 DCT related concepts (Continue) 

 Discrete Cosine Transform：integer indices 

 U＝0, we get the DC coefficient； 

 U=1, 2, …, 7，we get the first up to seventh AC coefficients. 

 Invert Discrete Cosine transform：using DC, AC and 

cosine functions to reconstruct the signal  

 

 DCT and IDCT adopt the same set of cosine functions 

which are know as basis functions 
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4.2 Discrete Cosine Transform (DCT) 

 1D DCT basis functions 
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4.2 Discrete Cosine Transform (DCT) 

 DCT enable to process or analyze the 

signal in frequency domain 

 Suppose f(i) represents a signal changes 

with time i 

 1D DCT transforms f(i) in time domain to F(U) 

in frequency domain. 

 F(u) are known as frequency response, form 

the frequency spectrum of f(i)  
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4.2 Discrete Cosine Transform (DCT) 

 Example (1)：f1(i)=100, a signal with magnitude of 100 

            {                                                  } 

 

 F1(0)=C(0)/2*（1·100+ 1·100 + 1·100 + 1·100 + 1·100 + 

1·100 + 1·100 + 1·100 ）noticed that 

 =C(0)·400≈283 

 F1(1)= 

           

           ＝0 

 F1(2)= F1(3)= F1(4)= F1(5)= F1(6)= F1(7)=0 
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4.2 Discrete Cosine Transform (DCT) 
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4.2 Discrete Cosine Transform (DCT) 

 Example 2: a signal f2(i), has the same frequency and 
phase as the second cosine basis function, amplitude is100 
 F2(0)= 

            

           

             ＝0 

 F2（2)＝ 

               

                 

                 

               ＝200 

 We can get other values by similar way  
 F2(1)＝F2(3)＝F2(4)＝…＝F2（7)＝0 
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4.2 Discrete Cosine Transform (DCT) 
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4.2 Discrete Cosine Transform (DCT) 

Properties of DCT transform 

 DCT produces the frequency spectrum F(u) of signal f(i) 

 The 0th DCT coefficient F(0) is the DC component of the signal f(i); 

 The other seven DCT coefficients reflect the various changing 

components of signal f(i) at different frequencies; 

 If DC is a negative value, this means that the average of f(i) is less 

than zero； 

 if AC is a negative value, this means that f(i) and some basis 

function have the same frequency but one of them happens to be 

half a cycle behind. 

 DCT is a linear transform 
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4.2 Discrete Cosine Transform (DCT) 

 One-Dimensional IDCT 

 If F(u) contains (u=0…7):69 -49 74 11 16 117 44 -5 

 IDCT can be implemented by eight iterations： 
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4.2 Discrete Cosine Transform (DCT) 

 An example of IDCT 
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4.2 Discrete Cosine Transform (DCT) 

 Cosine basis functions are orthogonal 

 

 

 

 2D separable basis 

 Factorization 2D DCT into two 1D DCT transforms 
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4.2 Discrete Cosine Transform (DCT) 
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4.3 Comparison of DCT and DFT 

 Fourier Transform 

 

 

 Discrete Fourier Transform 

 

 

 

 DCT is a close counterpart of the DFT, in signal 

processing, DCT is more popular. 
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4.3 Comparison of DCT and DFT 

DCT and DFT coefficient of the ramp function 
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4.3 Comparison of DCT and DFT 

(a) three-term DCT approximation (b) three-term DFT approximation 
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5. Wavelet-Based Coding 
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5.1 Introduction 

 DFT and DCT can give very fine resolution in the 

frequency domain, but no temporal resolution.  

 

Fourier Decomposition of A Song Signal 
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5.1 Introduction 

 Wavelet transform seeks to represents a signal with 

good resolution in both time and frequency.  

Wavelet Decomposition of A Song Signal 
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5.2 1D Haar Transform 
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5.3 2D Haar Transform 

                       original image                                              wavelet horizontally transform 
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5.3 2D Haar Transform 

wavelet horizontally and vertically transform (one level)                   wavelet transformation (2 levels) 
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The End! 

Thanks！ 


