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1. Distortion Measures 
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1.1 Concept of Distortion 

 Distortion Measure  

 A mathematical quantity: specifies how close 

an approximation to its original 

 It’s nature to think of the numerical difference  

 When it comes to image data, difference may 

not yield the intended result 

 Measures of perceptual distortion 
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1.2 Numerical Distortion Measures 

 Many numerical distortion measures -- the most 
commonly used distortion measures are presented：MSE、
SNR、PSNR 

 Mean Square Error（MSE）： 

 

 Average pixel difference 

 Signal-to-Noise Ratio（SNR)： 

 

 The size of the error relative to the signal 

 Peak-Signal-to-Noise Ratio (PSNR)： 

 

 

 The size of the error relative to the peak value of the signal 
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1.2 Numerical Distortion Measures 

 Examples of  PSNR and corresponding images 

 

 

 

 

 
 

     original image                polluted by noise             processed by noise filter 

                                     PSNR=18.24            PSNR=39.5 
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2.The Rate-Distortion Theory 
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2.1 Concept 

 Lossy compression always involves a tradeoff between 

rate and distortion 

 Rate -- the average number of bits required to represent each 

source symbol； 

 R(D) note rate-distortion function； 

 What is R(D)? 

 R(D) specifies the lowest rate at which the source data can be 

encoded while keeping the distortion bounded above by D 

 At D＝0, no loss, so is the entropy of the source data 

 Describe a fundamental limit for the performance of a coding 

algorithm 

 Can be used to evaluate the performance of different algorithm 
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2.2 A Typical R-D Function 

 A figure of a typical rate-distortion function 

 

 

 

 

 

 

 D＝0, the entropy of the source data 

 R(D)＝0, nothing coded 

 For a given source, it’s difficult to find a closed-form 

analytic description of the rate-distortion function 
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3. Quantization  
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3.1 Functions of Quantization 

 Quantization: the heart of any lossy scheme  

 Without quantization, almost no losing 

information 

 Reduce the number of distinct values via 

quantization 

 Each quantizer has its unique partition of 

the input range and the set of output values. 

 Scalar quantizer 

 Vector quantizer 
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3.2 Uniform Scalar Quantization 

 Uniform scalar quantizer 

 Partitions the input domain into equally spaced intervals 

 Decision boundaries: the end points of partition intervals 

 Output value: midpoint of the interval 

 Step size: the length of each interval  

 Two types of uniform scalar quantizer 

 midrise：with an even number of output levels, one partition 
interval brackets zero； 

 midtread：odd number of output levels, zero is an output value. 

 The goal of a successful uniform quantizer 

 Minimize the distortion for a given source input with a desired 
number of output values 
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3.2 Uniform Scalar Quantization 

 Given step size △＝1,output values for the 

two type of Quantizers be computed as： 

 

 Two types quantizers： 
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3.2 Uniform Scalar Quantization 

 Performance of a M level quantizer： 

 Decision Boundaries：B＝｛b0, b1, …, bM｝ 

 The set of output values：Y={y1, y2, …, yM} 

 The input is uniformly distributed：[-Xmax, Xmax] 

 The rate of quantizer:               is the number of bits 

required to code M things； 

 Step size is given by：∆＝2Xmax/M 

 Granular distortion: error caused by the quantizer 

for bounded input 

 Overload distortion: error caused by quantizer for 

input values larger than Xmax or smaller than -Xmax 

M
R
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3.2 Uniform Scalar Quantization 

 Granular distortion for a midrise quantizer 

 Decision boundaries bi:[(i-1)∆, i∆ ], i=1..M/2,  covering 

positive data X (another for native X values)  

 Output values yi：i∆-∆/2，i=1..M/2 

 The total distortion: twice the sum over the positive 

data： 

 

 

 The error value at X is e(x)=x-∆/2, variance of errors： 
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3.2 Uniform Scalar Quantization 

 Signal  variance                     ；if the quantizer is n 

bits，M＝2n 

 SQNR can be calculated as： 
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3.3 Nonuniform Scalar Quantization 

 If the input source is not uniformly distributed, a uniform 
quantizer may be inefficient. 

 Increasing the number of decision levels within the 
densely distributed region can lower granular distortion 

 Enlarge the region where the source is sparsely 
distributed can keep the total number of  decision levels 

 So nonuniform quantizers have nonuniforumly defined 
decision boundaries. 

 Two common approaches for nonuniform quantization： 

 The Lloyd-Max Quantizer 

 The companded quantizer 
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4. Transform Coding 
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4.1 Basic Idea 

 According principles of information theory 

 Coding vectors is more efficient than coding scalars 

 Need to group consecutive samples from input into vectors 

 Let X=｛x1, x2, …, xk｝be vector of samples, there’s an  
amount correlation among neighboring. 

 If Y is the result of a linear transform T of the input 
vector and its components have much less correlation, 
then Y can be coded more efficiently than X. 

 The transform T itself does not compress any data.  

 The compression comes from the processing and quantization of 
the components of Y.  

 DCT is a widely used transform, it can perform de-
correlation of the input signal. 
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4.2 Discrete Cosine Transform (DCT) 

 1D Discrete Cosine Transform： 

 

 1D Inverse Discrete Cosine Transform: 

 

 

 

 2D transform can be used to process 2D signals 

such as digital images 
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4.2 Discrete Cosine Transform (DCT) 

DCT（2D）Definition： 

 Given a function f(i, j) over an image，the 2D DCT 

transforms it into a new function F(u,v), integer u 

and v running over the same range as i and j. 

 The general definition of the DCT transform is： 
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4.2 Discrete Cosine Transform (DCT) 

 In the JPEG image compression standard 

 An image block is defined to have dimension M=N=8； 

 The definition of 2D DCT and its inverse IDCT are as 

follows： 

 2D Discrete Cosine Transform(2D DCT)： 

 

 2D Inverse Discrete Cosine Transform(2D IDCT)： 
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4.2 Discrete Cosine Transform (DCT) 

 DCT related concepts 

 Direct current (DC) and alternating current (AC) 

 Represent constant and variable magnitude respectively； 

 

 Fourier analysis  

 Any signal can be expressed as a sum of multiple signals that 

are sine or cosine wave forms. 

 An signal usually composed of one DC and several AC 

components； 

 Cosine Transform 

 The process used to determine the amplitude of the AC and 

DC components of the signal. 
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4.2 Discrete Cosine Transform (DCT) 

 DCT related concepts (Continue) 

 Discrete Cosine Transform：integer indices 

 U＝0, we get the DC coefficient； 

 U=1, 2, …, 7，we get the first up to seventh AC coefficients. 

 Invert Discrete Cosine transform：using DC, AC and 

cosine functions to reconstruct the signal  

 

 DCT and IDCT adopt the same set of cosine functions 

which are know as basis functions 
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4.2 Discrete Cosine Transform (DCT) 

 1D DCT basis functions 
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4.2 Discrete Cosine Transform (DCT) 

 DCT enable to process or analyze the 

signal in frequency domain 

 Suppose f(i) represents a signal changes 

with time i 

 1D DCT transforms f(i) in time domain to F(U) 

in frequency domain. 

 F(u) are known as frequency response, form 

the frequency spectrum of f(i)  
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4.2 Discrete Cosine Transform (DCT) 

 Example (1)：f1(i)=100, a signal with magnitude of 100 

            {                                                  } 

 

 F1(0)=C(0)/2*（1·100+ 1·100 + 1·100 + 1·100 + 1·100 + 

1·100 + 1·100 + 1·100 ）noticed that 

 =C(0)·400≈283 

 F1(1)= 

           

           ＝0 

 F1(2)= F1(3)= F1(4)= F1(5)= F1(6)= F1(7)=0 
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4.2 Discrete Cosine Transform (DCT) 
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4.2 Discrete Cosine Transform (DCT) 

 Example 2: a signal f2(i), has the same frequency and 
phase as the second cosine basis function, amplitude is100 
 F2(0)= 

            

           

             ＝0 

 F2（2)＝ 

               

                 

                 

               ＝200 

 We can get other values by similar way  
 F2(1)＝F2(3)＝F2(4)＝…＝F2（7)＝0 
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4.2 Discrete Cosine Transform (DCT) 
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4.2 Discrete Cosine Transform (DCT) 

Properties of DCT transform 

 DCT produces the frequency spectrum F(u) of signal f(i) 

 The 0th DCT coefficient F(0) is the DC component of the signal f(i); 

 The other seven DCT coefficients reflect the various changing 

components of signal f(i) at different frequencies; 

 If DC is a negative value, this means that the average of f(i) is less 

than zero； 

 if AC is a negative value, this means that f(i) and some basis 

function have the same frequency but one of them happens to be 

half a cycle behind. 

 DCT is a linear transform 

 
)()()( qTpTqpT  
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4.2 Discrete Cosine Transform (DCT) 

 One-Dimensional IDCT 

 If F(u) contains (u=0…7):69 -49 74 11 16 117 44 -5 

 IDCT can be implemented by eight iterations： 

8

)12(
cos37

16

)12(
cos5.243.24

)2(
8

)12(
cos

2

)2(
)1(

16

)12(
cos

2

)1(
)0(0cos

2

)0(~
:2

16

)12(
cos5.243.24

)1(
16

)12(
cos

2

)1(
)0(0cos

2

)0(~
:1

3.24)0(0cos
2

)0(~
:0

































ii

F
iC

F
iC

F
C

fIteration

i

F
iC

F
C

fIteration

F
C

fIteration

i

i

i



Fundamentals of Multimedia    34 

4.2 Discrete Cosine Transform (DCT) 

 An example of IDCT 
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4.2 Discrete Cosine Transform (DCT) 

 Cosine basis functions are orthogonal 

 

 

 

 2D separable basis 

 Factorization 2D DCT into two 1D DCT transforms 
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4.2 Discrete Cosine Transform (DCT) 
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4.3 Comparison of DCT and DFT 

 Fourier Transform 

 

 

 Discrete Fourier Transform 

 

 

 

 DCT is a close counterpart of the DFT, in signal 

processing, DCT is more popular. 
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4.3 Comparison of DCT and DFT 

DCT and DFT coefficient of the ramp function 
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4.3 Comparison of DCT and DFT 

(a) three-term DCT approximation (b) three-term DFT approximation 
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5. Wavelet-Based Coding 
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5.1 Introduction 

 DFT and DCT can give very fine resolution in the 

frequency domain, but no temporal resolution.  

 

Fourier Decomposition of A Song Signal 
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5.1 Introduction 

 Wavelet transform seeks to represents a signal with 

good resolution in both time and frequency.  

Wavelet Decomposition of A Song Signal 
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5.2 1D Haar Transform 

}4,4,5.0,5.1,7,7,25.0,25.18{},,,{

}4,4,5.0,5.1,7,7,18,5.18{},,{

}4,4,5.0,5.1,11,25,5.25,5.11{},{

2

2

}15,7,21,29,26,25,13,10{}{

,1,2,3,3

,1,2,2

,1,1

12,2,

,1

12,2,

,1

,





























inininin

ininin

inin

inin

in

inin

in

in

dddx

ddx

dx

xx
d

xx
x

x



Fundamentals of Multimedia    44 

5.3 2D Haar Transform 

                       original image                                              wavelet horizontally transform 
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5.3 2D Haar Transform 

wavelet horizontally and vertically transform (one level)                   wavelet transformation (2 levels) 
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The End! 

Thanks！ 


