

Fundamentals of Multimedia &6 Lossless compression 1

6. Lossless Compression Algorithms

Introduction and Basics of Information Theory

Lossless Coding Algorithms

- Run-Length Coding
- Variable-Length Coding (VLC)
- Dictionary-Based Coding
- Arithmetic Coding

Lossless Image Compression

- More and more data into digital form
 - Libraries, museums, governments
 - To be stored without any loss
- □ For example -- To encode 120 million call numbers
 - Each item need a 27-bit number, $2^{27} > 120M$
 - Compression to reduce the number of bits needed
- **Different data appear at different frequencies**
 - **To assign fewer bits to present more frequently appeared data**
 - VLC—Variable-Length Coding
- Lossless coding
 - Both the compression and decompression processes induce no information loss

Laboration 1.2 Data Compression Scheme

Definition: Compression Ratio

- Compression ratio = B0 / B1
 - **The number of bits before compression is B0**
 - **The number of bits after compression is B1**

Compression ratio must be larger than 1.0;

- The higher the compression ratio, the better the lossless compression scheme
- A general data compression scheme

□ The entropy of an information source

- With alphabet $S = \{s1, s2, ..., sn\}$
- **n**=**H(S)**= $\sum_{i=1}^{n} p_i \log_2 \frac{1}{p_i} = -\sum_{i=1}^{n} p_i \log_2 p_i$
- **p**_i is the probability that symbol si in S will occur

 $\log_2 \frac{1}{p_i}$ indicate the amount of information contained in characters (Self-information)

- □ For example: the probability of n in a manuscript is 1/32, so
 - The amount of information is 5 bits
 - A character sting nnn require 15 bits to code

□ What is entropy?

- A measure of the disorder of a system
- The more entropy, the more disorder

Examples:

Media Laboratory

Suppose a system has 4 states outcome, each outcome has probability 1/4:

 $4 \times (1/4) \times \log_2(1/(1/4)) = 2bits$

- If one state had probability 1/2, the other three had probability 1/6: $\frac{1}{2} \times \log_2 2 + 3 \times \frac{1}{6} \times \log_2 6 = 1.795 < 2bits$
- The most-occurring one means fewer bits to send
- The definition of entropy -- identifying oftenoccurring symbols as short codewords
 - Variable-Length Coding

Fundamentals of Multimedia 10

The entropy of the two above images

The entropy of image a is:

 $\eta = \sum_{i=0}^{255} \frac{1}{256} \cdot \log_2 256 = 8$ The entropy of image b is: $\eta = \frac{1}{3} \cdot \log_2 3 + \frac{2}{3} \cdot \log_2 \frac{3}{2}$ $= 0.33 \times 1.59 + 0.67 \times 0.59 = 0.92$

□ The entropy is greater when the probability is flat and smaller when it is more peaked.

2. Lossless Coding Algorithms

Media 2.1 Run-Length Coding

RLC (RUN-LENGTH CODING)

- One of the simplest forms of data compression
- **Basic idea:**
 - If symbols of information source tend to form continuous groups, Code one such symbol and the length of the group instead of coding each symbol individually
- Example: a bi-level image can be efficiently coded using RLC
 - Two-Dimensional RLC is usually used to code bilevel image.

Laboratory 2.2 Variable-Length Coding

Basic idea

- Entropy indicates the information content in an information source
- UNDERSEMBLE VLC is one of the best-know entropy coding methods
 - Shannon-Fano algorithm
 - Huffman coding
 - Adaptive Huffman coding

Shannon-Fano Algorithm

Developed by Shannon at Bell Labs and Robert Fano at MIT

□ The <u>Top-Down</u> manner

- Sort the symbols according to the frequency count of their occurrences
- Recursively divide the symbols into two parts, each with approximately the same number of counts, until all parts contain only one symbol
- A way of implementing the above procedure is to build a binary tree

Example: Hello

Symbol	Η	E	L	0
Count	1	1	2	1

□ The entropy of the example: 0.4×1.32+0.2×2.32+0.2×2.32+0.2×2.32 =1.92

 One result of performing the S-F algorithm on "Hello": average bits 10/5=2

symbol	Count	Log ₂ P _i ⁻¹	Code	Number of bits used		
L	2	1.32	0	2		
Н	1	2.32	10	2		
Ε	1	2.32	110	3		
0	1	2.32	111	3		
Total number of bits: 10						

Huffman Coding

- First presented by David A. Huffman in 1952
- Adopted in applications, Such as fax, JPEG, MPEG

□ A <u>bottom-up</u> manner:

- Initialization: put all symbols on the list sorted according to their frequency counts
- Repeat until the list has only one symbol left:
 - □ From the list, pick two symbols with the lowest frequency counts, form a Huffman sub-tree that has these two symbols as child nodes and create a parent node for them
 - □ Assign the sum of the children's frequency counts to the parent and insert it into the list, such that the order is maintained.
 - Delete the children from the list
- Assign a codeword for each leaf based on the path from the root

Laboratory 2.2 Variable-Length Coding

- □ For above example, Huffman coding generate the same coding result as Shannon-Fano algorithm
- □ Another example
 - A:(15), B:(7), C:(6), D:(6) and E:(5)
 - Shannon-Fano needs 89bits;
 - Huffman needs 87 bits
- **Conclusions**
 - If correct probabilities are available, Huffman coding produces good compression results.
 - Important properties:
 - **Unique prefix property**
 - **Optimality**
- Extended Huffman coding

Adaptive Huffman Coding

- Huffman Coding requires prior statistical knowledge about the information source, which is often not available
- Even when the statistics are available, the transmission of the symbol table could represent heavy overhead
- Adaptive algorithm, statistics are gathered and updated dynamically as the data-stream arrives
- The probabilities are no longer based on prior knowledge but on actual data received so far

Basic idea of Adaptive Huffman Coding

- Intial_code: assigns symbols with some initially agreed-upon codes;
- Update_Tree: constructing an adaptive Huffman tree
 - Increment the frequency counts for the symbols;
 - Update the configuration of the tree.
- The encoder and decoder must use exactly the same intial_code and Update_Tree routines.

Fundamentals of Multimedia 23

2.3 Dictionary-Based Coding

- First proposed by Ziv and Lempel in 1977 and 1978 respectively
- Terry Welch improved the technique in 1984
- Lempel-Ziv-Welch algorithm (called LZW compression)
- It is used in e.g., UNIX compress, GIF, V.42 bis for modems

2.3 Dictionary-Based Coding

LZW Compression Algorithm

```
w = NIL;
while ( read a character k ) {
  if wk exists in the dictionary
    w = wk;
else
    add wk to the dictionary;
    output the code for w;
    w = k;
}
```

Suppose a dictionary contains 4,096 entries, with the first 256(0~255) entries being ASCII codes.

2.3 Dictionary-Based Coding

Example: Input string: "^WED^WE ^WEE^WEB ^WET".

742	k	Output	Index	Symbol
NIL	<u>^</u>			
~	W	<u>^</u>	256	~w
w	Е	W	257	WE
Ε	D	E	258	ED
D	<u>^</u>	D	259	D^
~	W			
$^{\mathrm{W}}$	E	256	260	^WE
Е	<u>^</u>	E	261	E^
~	W			
$^{\mathrm{N}}$	E			
$^{\rm WE}$	E	260	262	^WEE
Е	<u>^</u>			
\mathbf{E}^{\wedge}	W	261	263	E^W
w	E			
WE	В	257	264	WEB
в	<u>^</u>	В	265	B^
~	W			
$^{\mathrm{N}}$	E			
$^{\rm WE}$	Т	260	266	^WET
Т	EOF	Т		

Laboratory 2.3 Dictionary-Based Coding

- LZW Decompression
- w = NIL;

}

```
while ( read a character k ) { /* k could be a character or a code. */
    entry = dictionary entry for k;
    output entry;
    if( s!=NIL)
        add w + entry[0] to dictionary with a new code;
        w = entry;
```

Letter 2.3 Dictionary-Based Coding

Example (continued):

Input string: "^WED<256>E<260>

<261><257>B<260>T".

w	k	Output	Index	Symbol
	^	^		
^	W	W	256	^W
W	E	E	257	WE
Ε	D	D	258	ED
D	<256>	~W	259	D^
<256>	E	E	260	^WE
Ε	<260>	^WE	261	E^
<260>	<261>	E^	262	^WEE
<261>	<257>	WE	263	E^W
<257>	В	В	264	WEB
В	<260>	^WE	265	B^
<260>	Т	Т	266	^WET

1.4 Arithmetic Coding

□ Basic idea

- Instead of present each character as a codeword, Arithmetic Coding represent the whole message by a half-open interval [a,b) contained in [0,1].
- The length of the interval [a,b) equals the probability of the message. Choose a decimal in [a,b) and transform it into binary form as coding output.
- Each character can shorten the interval, so the more characters ,the more shorter the interval will be.
- As the interval become shorter, more bits are needed to present the interval

□ Average bits used for each character can be decimal

LACTOR 2.4 Arithmetic Coding

Example: "SQUEEZE"

3. Lossless Image Compression

Fundamentals of Multimedia &6 Lossless compression 31

Xetwork 3.1 Lossless Image Compression

Differential coding

One of the most commonly used compression techniques in multimedia data compression

The basic of data reduction in differential coding

Existing redundancy in consecutive symbols in a datastream

3.2 Differential Coding of Images

- Given an original image I (x, y), defining a difference image d (x, y)
- Using a simple difference operator
 - $\mathbf{d}(\mathbf{x},\mathbf{y}) = \mathbf{I}(\mathbf{x},\mathbf{y}) \mathbf{I}(\mathbf{x}-1,\mathbf{y})$
- Discrete 2D Laplacian operator
 - d(x,y) = 4I(x,y) I(x,y-1) I(x,y+1) I(x+1,y) I(x-1,y)
- Image I has larger entropy than image d
 - **VLC -- shorter bit-length for the difference image**
 - **Compression works better on a difference image**

Lossless JPEG

- Special case of JPEG image compression which has no lossy steps
- Involves two steps: forming a differential prediction and encoding
 - Predictor: combines the values of up to three neighboring pixels as the predicted value for the current pixel
 - Encoder: Compares the prediction with the actual pixel and encodes the difference using lossless compression algorithm
 - Lossless JPEG usually yields a relatively low compression ratio, which renders it impractical for most multimedia applications

Lossless JPEG Predictors

	С	В	
	А	Х	

Predictor	Prediction
P1	А
P2	В
P3	С
P4	A+B-C
P5	A+(B-C)/2
P6	B+(A-C)/2
P 7	(A+B)/2

Comparison of Lossless JPEG with other lossless compression programs

Compression program	Compression ratio				
	Lena	Football	F-18	Flower	
Lossless JPEG	1.45	1.54	2.29	1.26	
Optimal lossless JPEG	1.49	1.67	2.71	1.33	
Compress(LZW)	0.86	1.24	2.21	0.87	
gzip(LZ77)	1.08	1.36	3.10	1.05	
gzip-9(optimal LZ77)	1.08	1.36	3.13	1.05	
pack (Huffman coding)	1.02	1.12	1.19	1.00	

