

Fundamentals of Multimedia

Authored by Ze-Nian Li Mark S. Drew

Lecturer: Lu Dongming

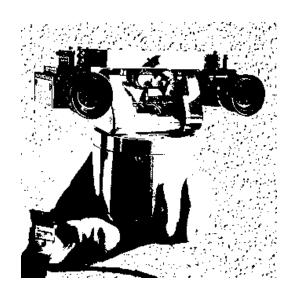


2. Graphics and Image Data Representation

Main content

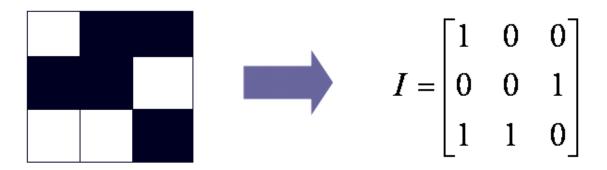
- □ Basic Data Types
 - 1-Bit Images
 - 8-Bit Grey-Level Images
 - 24-Bit Color Images
 - 8-Bit Color Images
 - Color Lookup Table (LUTs)
- □ Popular File Formats
 - JPEG,GIF, BMP, others

1. Basic Graphics/Image Types


1-Bit Image; 8-Bit Grey-Level Image 24-Bit Color Image; 8-Bit Color Image **Color Lookup Tables**

1.1 1-Bit Image: Case

Also called Binary Image or Monochrome Image



1-Bit Image Examples

Media 1.1 1-Bit Image: Features

- Consist of on and off pixels (pixel--picture elements in digital images)
- Each pixel is stored as a single bit (0 or 1), 0-black, 1--white

1.1 1-Bit Image: Size and Usage

- □ Storage
 - Monochrome image with resolution: 640×480
 - \bullet 640 \times 480/8 bytes
 - Storing space needed: 38.4KB

- **□** Usage
 - Pictures containing only simple graphics and text

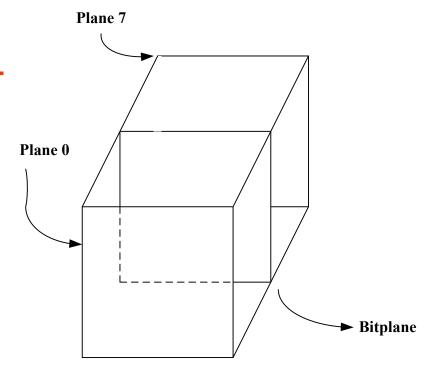
1.2 8-Bit Gray-level Image: Case

8-Bit Gray-Level Image Examples

1.2 8-Bit Gray-level Image: Case

8-Bit Gray-Level Image VS 1-Bit Image

1.2 8-Bit Gray-level Image: Features


- □ Each pixel is represented by a single byte
 - A gray value between 0 and 255
- □ The entire image can be thought of as a two-dimensional array of pixel values
 - Called bitmap

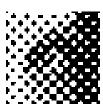
$$I = \begin{bmatrix} 0 & 150 & 200 \\ 120 & 50 & 180 \\ 250 & 220 & 100 \end{bmatrix}$$

1.2 8-Bit Gray-level Image: Features

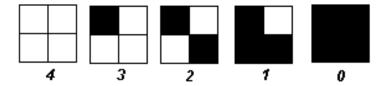
- □ 8-Bit image as a set of 1bit bitplanes
 - Each plane consists of a 1bit representation of the image at one level
 - All the bitplanes make up a single byte that stores the value between 0 ~ 255

Labdratory 1.2 8-Bit Gray-level Image: Size

- Resolution
 - High: 1600×1200
 - Low: 640×480
 - **Aspect Ratio: 4:3**
- The space needed by a 640×480 grey image
 - $640 \times 480 = 307,200$ bytes
- Hardware storing Image Array
 - frame buffer /"Video" card


1.2 8-Bit Gray-level Image: Print

- □ Printing such image is complex
 - Use Dithering
 - Convert intensity resolution into spatial resolution
- □ 1bit-Output Printer --Using large matrix
 - 0~255 grey value Corresponding a model
 - One pattern one pixel
- □ Halftone printing



1.2 8-Bit Gray-level Image: print

- An $N \times N$ matrix represents N^2+1 levels of intensity
 - 2×2 pattern can represent five level:

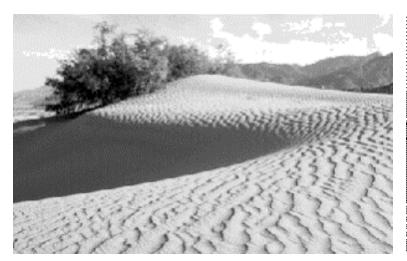
0	3
2	1

- The above method increasing the size of the output image
 - If one pixel uses 4×4 pattern, the size of an $N\times N$ image becomes $4N \times 4N$, makes an image 16 times as large!

1.2 8-Bit Gray-level Image: print

- One better method: Avoid enlarging the output image
 - Store an integer matrix (Standard Pattern), each value from 0 to 255
 - Comparing the grey image matrix with pattern, print the dot when the value greater than the grey

0	14	22	5	8
18	9	1	19	13
6	24	16	7	23
21	2	12	20	3
10	15	4	11	17



One 25-grey level case: left is standard the right with grey=15

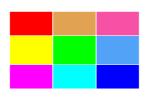
1.2 8-Bit Gray-level Image: Print

Generate the output image using standard matrix

An example

1.3 24-Bit Color Image: Case

屋图屏风烛影器。 **代列類類照是別。** 帰照顾循偏灵蹈。 男體青天夜夜心!


Ohonge Alying to the Moon

1.3 24-Bit Color Image: Feature

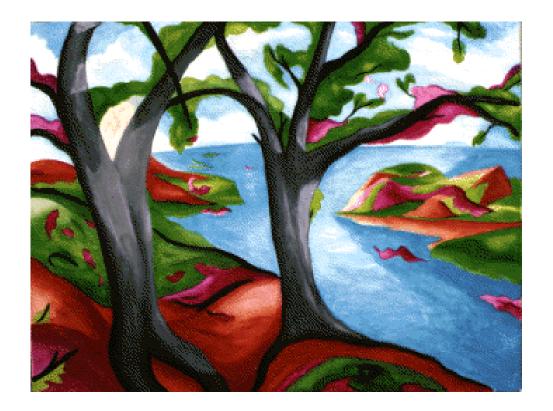
- □ Each pixel using three bytes: representing RGB
 - Value from 0 to 255;
 - Supports $256 \times 256 \times 256$ colors, 16,777,216
- □ Each pixel described by different grey values of RGB

$$R = \begin{bmatrix} 255 & 240 & 240 \\ 255 & 0 & 80 \\ 255 & 0 & 0 \end{bmatrix}$$

$$G = \begin{bmatrix} 0 & 160 & 80 \\ 255 & 255 & 160 \\ 0 & 255 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 80 & 160 \\ 0 & 0 & 240 \\ 255 & 255 & 255 \end{bmatrix}$$

1.3 24-Bit Color Image: Size

- \square 640 \times 480 24-Bit Color image, 921.6KB
 - \bullet 640×480×3 bytes
- □ Many 24-bit color image actually stored as 32-Bit image
 - Extra data of each pixel used to store αvalue, indicate the special effect information (such as, transparency flag)



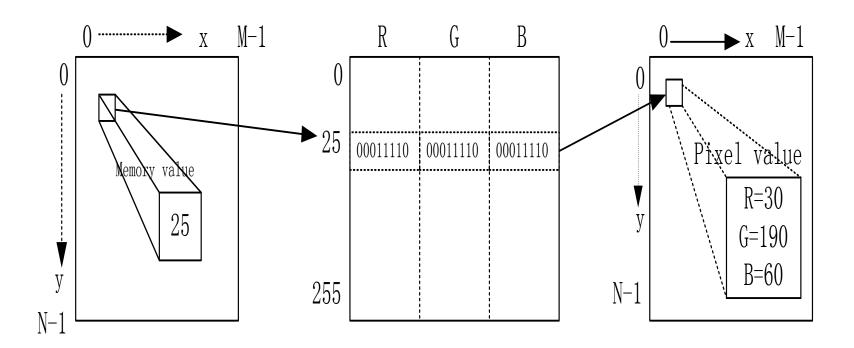
Semi-transparency image color = Source image color × (100% - transparency) +Background image color × transparency

1.4 8-Bit Color Image: Case

□ Also called 256-colors image

1.4 8-Bit Color Image: Case

8-Bit Color Image VS 24-Bit Color Image



1.4 8-Bit Color Image: Features

- □ The idea of using Lookup table(palette)
 - An image store a set of bytes, not the real color
 - Bytes value is the index to a 3-bytes color table
 - Choosing what colors to put in table is important
- □ Choose the most important 256 colors
 - **Generated by clustering the 256 \times 256 \times 256 colors**
 - **Median-cut** Algorithm
 - More accurate version of the Median-cut Algorithm

1.5 Color Lookup Tables: Case

Value as the Index to Table

Get the color values by Searching

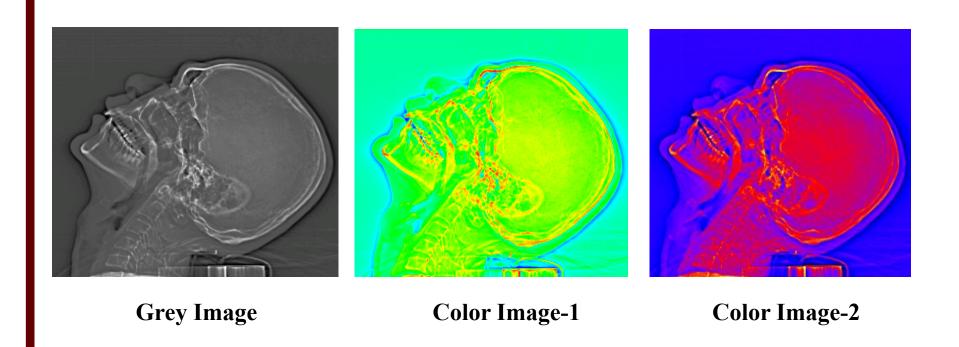
The RGB value of the pixel

1.5 Color Lookup Tables: How to apply

- Change color by adjusting the LUT
 - LUT less than image, with the advantage of speed **Example:** change LUT

into

Index	R	G	В
1	255	0	0


Index	R	G	В
1	0	255	0

For the color index by 1, that is to convert red to green

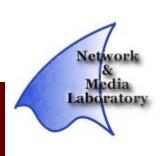
- An important application: Medical Image
 - Convert the grey image into color image

1.5 Color Lookup Tables: medical image

By modifying the LUT to convert grey image into color image

1.5 Color Lookup Tables: Medical image

Index	R	G	В
0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
• • •	• • •	• • •	• • •
64	64	64	64
65	65	65	65
66	66	66	66
67	67	67	67
68	68	68	68
69	69	69	69
• • •	• • •	• • •	• • •
254	254	254	254
255	255	255	255


Index	R	G	В	
0	0	0	0	
1	0	0	7	
2	0	0	15	
3	0	0	23	
	• • •	• • •		
64	0	255	255	
65	0	255	247	
66	0	255	239	
67	0 255		231	
68	0	255	223	
69	0	255	215	
• • •	• • •	• • •	•••	
254	255	248	248	
255	255	252 252		

Index	R	G	В
0	0	0	0
1	0	0	4
2	0	0	8
3	0	0	12
• • •	• • •	• • •	• •
64	0	0	255
65	4	0	255
66	8	0	255
67	12	0	255
68	16	0	255
69	20	0	255
•••	• • •	• • •	• • •
254	255	255	248
255	255	255	252

正常灰度LUT

彩虹编码LUT

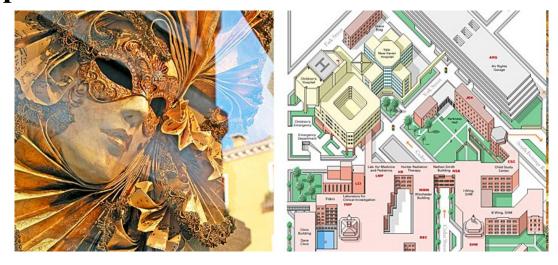
热金属编码LUT

2. Popular image file format

GIF; JPEG; BMP; PNG

TIFF; EXIF; others

2.1 GIF Image: Case


2.1 GIF Image: features

- □ GIF (Graphics Interchange Format)
 - Invented by UNISYS Corporation and Compuserve in 1987
 - Initially transmit graphical image through telephone line
 - Not belong to any application program, presently supported by almost all relevant software

2.1 GIF Image: features

- □ Using LZW (Lempel-Ziv-Welch) Compression Algorithm
 - LZW algorithm is lossless format with continuous color, compression rate about 50%

The <u>LZW compression</u> built into the GIF graphic format is very good at efficiently saving diagrammatic graphics (right) but poor at compressing more complex photographic images (left).

2.1 GIF Image: features

- □ Limited to 8-bit (256) color image
 - GIF image depth from l-bit to 8-bits
 - GIF image supports 256 colors
 - Suitable for storing graphics with relatively few colors such as simple diagrams, shapes, logos and cartoon style images.
 - □ It also supports animation and is still widely used to provide image animation effects.

2.1 GIF Image: features (Cont.)

- □ Interlacing
 - Decode speed fast
 - Store in interlacing method
 - Can Gradually Display by four passes
- □ The GIF89a supporting animation
 - Storing multiply color images in one image file

2.1 GIF Image: Case Analysis

One 120*160 gif image

Offset Length Contents 3 bytes "GIF" 3 bytes "87a" or "89a" 2 bytes <Logical Screen Width> 2 bytes <Logical Screen Height> **10** 1 byte bit 0: Global Color Table Flag (GCTF) bit 1..3: Color Resolution bit 4: Sort Flag to Global Color Table bit 5..7: Size of Global Color Table: 2^(1+n) 11 1 byte <Background Color Index>

Gif: file head information offset, length, contents

GIF signature **Screen descriptor** Global color map

Image descriptor

Local color map

Raster area

GIF terminator

Gif file format

2.1 GIF Image: Case Analysis

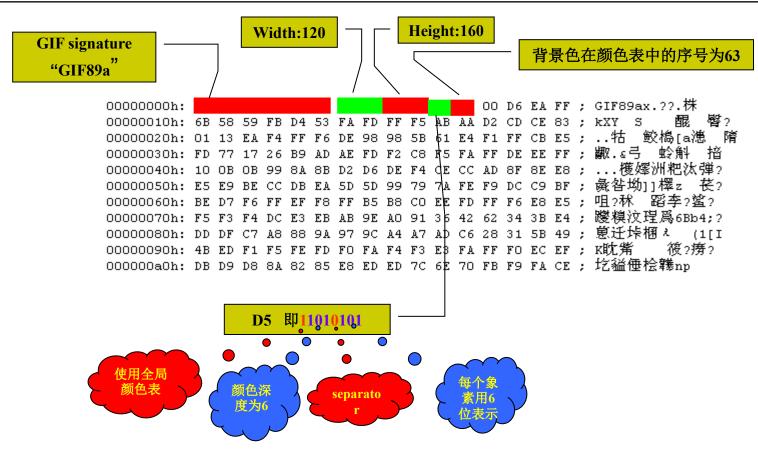
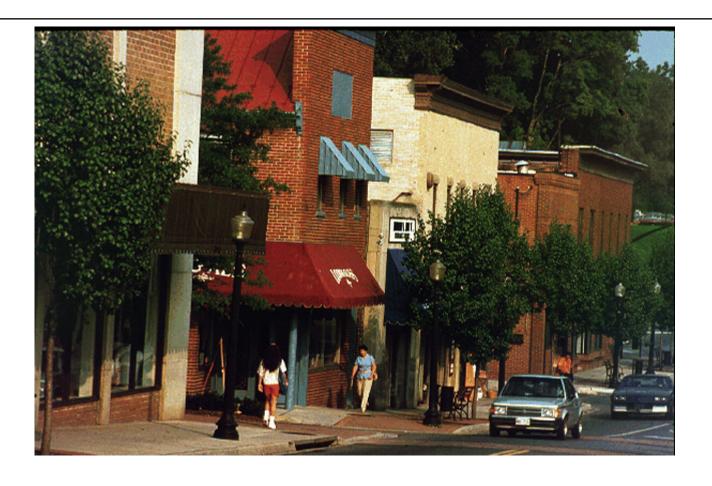
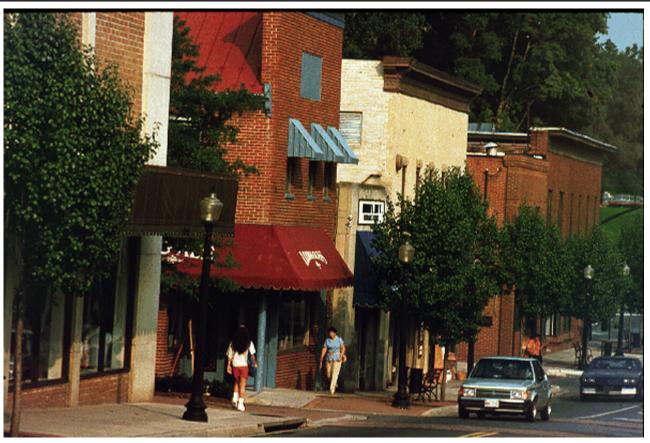



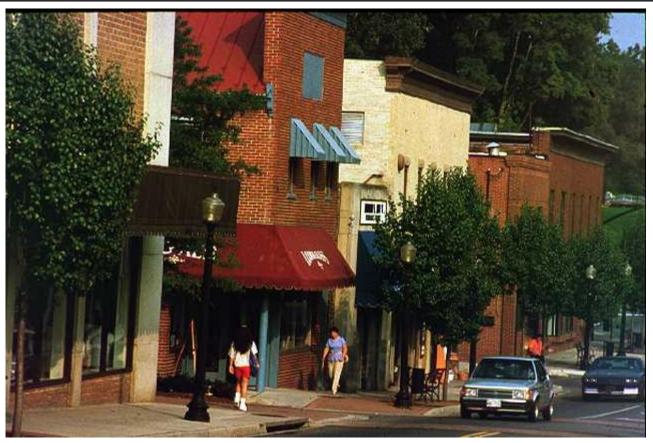
Image file analysis opened by Ultra-edit

2.2 JPEG Image: Case



2.2 JPEG Image: Features

- □ JPEG (Joint Photographic Experts Group)
 - Created by the Task Group of the International Standard Organization (ISO)
- □ Take advantage of some limitations of human vision system
 - JPEG achieve high rates of compression
- □ A lossy compression method
 - Allow user to set a desired level of quality, or compression ratio (input divided by output)

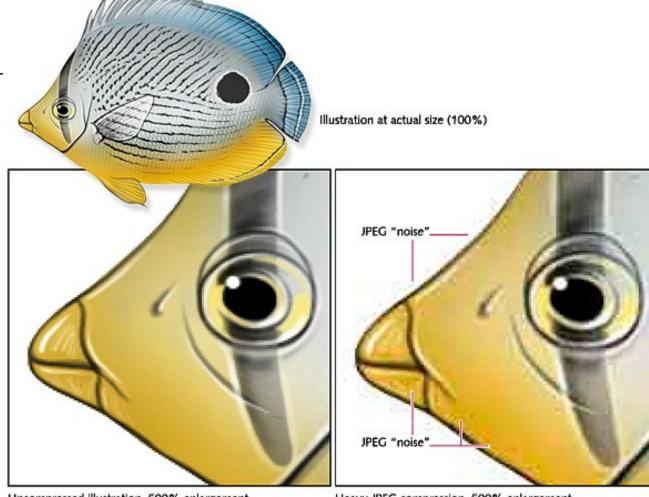

2.2 JPEG Image: Example1

JPEG Image (1): 252kB

2.2 JPEG Image: Example2

JPEG Image(2): 45.2kB

2.2 JPEG Image: Example3


JPEG Image (3): 9.21kB

2.2 JPEG Image: Usage

- □ Small file, high quality, widely supported
 - The compression when not too severe does not detract noticeably from the image. It's suitable for web images.
- □ JPEG files can suffer generational degradation when repeatedly edited and saved.
 - Photographic images may be better stored in a lossless non-JPEG format if they will be re-edited in future, or if the presence of small "artifacts" (blemishes), due to the nature of the JPEG compression algorithm, is unacceptable.
- □ JPEG is also used as the image compression algorithm in many Adobe PDF file.

Uncompressed illustration, 500% enlargement

Heavy JPEG compression, 500% enlargement

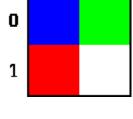
JPEG compression comes at a cost: a big increase in visual noise and other compression artifacts that degrade the image quality if over-used

Media Labdratory 2.3 BMP Image

- □ Created by Microsoft as Window's main image format, can store 1bit, 4bits, 8bits, as well as real color data
- □ Best image quality, large file, the advantage is their simplicity and wide acceptance in Windows programs.
- **■** BMP file has three storage forms:
 - Original data without compression, most popular
 - Run Length Encoding: Used for 8-bits image (256 colors) BI-RLE8
 - RLE: used for 4-bits image (16 colors) BI_RLE4

Media Laboratory 2.3 BMP Image

■ BMP file consists four components:


- File Head: type and other information
- Information head of bitmap: length, width, compression algorithms and so on
- Palette: Color LUT table, 24-bits real color image with no palette
- Image Data: Real color image stores (R,G,B) three components, image with palette stores the index to the palette

2.3 BMP Image

□ Case analysis: 2x2 Pixel Bitmap, with 24 bits/pixel encoding

Offset	Size	Hex Value	Value	Description
0h	2	42 4D	"ВМ"	Magic Number (unsigned integer 66, 77)
2h	4	46 00 00 00	70 Bytes	Size of the BMP file
6h	2	00 00	Unused	Application Specific
8h	2	00 00	Unused	Application Specific
Ah	4	36 00 00 00	54 bytes	The offset where the bitmap data (pixels) can be found.
Eh	4	28 00 00 00	40 bytes	The number of bytes in the header (from this point).
12h	4	02 00 00 00	2 pixels	The width of the bitmap in pixels
16h	4	02 00 00 00	2 pixels	The height of the bitmap in pixels
1Ah	2	01 00	1 plane	Number of color planes being used.
1Ch	2	18 00	24 bits	The number of bits/pixel.
1Eh	4	00 00 00 00	0	BI_RGB, No compression used
22h	4	10 00 00 00	16 bytes	The size of the raw BMP data (after this header)
26h	4	13 OB OO OO	2,835 pixels/meter	The horizontal resolution of the image
2Ah	4	13 OB OO OO	2,835 pixels/meter	The vertical resolution of the image
2Eh	4	00 00 00 00	0 colors	Number of colors in the palette
32h	4	00 00 00 00	0 important colors	Means all colors are important

Media Labdratory 2.3 BMP Image

case analysis: 2x2 Pixel Bitmap, with 24 bits/pixel encoding (cont')

Start of Bitmap Data				
36h	3	00 00 FF	0 0 255	Red, Pixel (1,0)
39h	3	FF FF FF	255 255 255	White, Pixel (1,1)
3Ch	2	00 00	0.0	Padding for 4 byte alignment (Could be a value other than zero)
3Eh	3	FF 00 00	255 0 0	Blue, Pixel (0,0)
41h	3	00 FF 00	0 255 0	Green, Pixel (0,1)
44h	2	00 00	0.0	Padding for 4 byte alignment (Could be a value other than zero)

0

2.3 Other typical image formats

- □ PNG (Portable Network Graphics)
 - Successor of GIF, support true color(16 million colors).
 - It Excels when the image has large areas of uniform color.
 - The lossless PNG format is best suited for editing pictures.
- □ TIFF (Tagged Image File Format)
- **□ EXIF (Exchange Image File)**
- Others

The End

Thanks!