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To Wayne Wheeler, an editor par excellence

Write your own story. Don't let others write it for you.

Chinese fortune-cookie advice



Preface to the
Fourth Edition

I was pleasantly surprised when in November 2005 a message arrived from Wayne
Wheeler, the new computer science editor of Springer Verlag, notifying me that he in-
tends to qualify this book as a Springer major reference work (MRW), thereby releasing
past restrictions on page counts, freeing me from the constraint of having to compress
my style, and making it possible to include important and interesting data compression
methods that were either ignored or mentioned in passing in previous editions.

These fascicles will represent my best attempt to write a comprehensive account, but
computer science has grown to the point where I cannot hope to be an authority on
all the material covered in these books. Therefore I'll need feedback from readers in
order to prepare the official volumes later.

I try to learn certain areas of computer science exhaustively; then I try to digest that
knowledge into a form that is accessible to people who don’t have time for such study.

—Donald E. Knuth, http://www-cs-faculty.stanford.edu/ knuth/ (2006)

Naturally, all the errors discovered by me and by readers in the third edition have
been corrected. Many thanks to all those who bothered to send error corrections, ques-
tions, and comments. I also went over the entire book and made numerous additions,
corrections, and improvements. In addition, the following new topics have been included
in this edition:

= Tunstall codes (Section 2.4). The advantage of variable-size codes is well known to
readers of this book, but these codes also have a downside; they are difficult to work
with. The encoder has to accumulate and append several such codes in a short buffer,
wait until n bytes of the buffer are full of code bits (where n must be at least 1), write the
n bytes on the output, shift the buffer n bytes, and keep track of the location of the last
bit placed in the buffer. The decoder has to go through the reverse process. The idea
of Tunstall codes is to construct a set of fixed-size codes, each encoding a variable-size
string of input symbols. As an aside, the “pod” code (Table 7.29) is also a new addition.
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= Recursive range reduction (3R) (Section 1.7) is a simple coding algorithm due to
Yann Guidon that offers decent compression, is easy to program, and its performance is
independent of the amount of data to be compressed.

= LZARI, by Haruhiko Okumura (Section 3.4.1), is an improvement of LZSS.

= RAR (Section 3.20). The popular RAR software is the creation of Eugene Roshal.
RAR has two compression modes, general and special. The general mode employs an
LZSS-based algorithm similar to ZIP Deflate. The size of the sliding dictionary in RAR
can be varied from 64 Kb to 4 Mb (with a 4 Mb default value) and the minimum match
length is 2. Literals, offsets, and match lengths are compressed further by a Huffman
coder. An important feature of RAR is an error-control code that increases the reliability
of RAR archives while being transmitted or stored.

s 7-z and LZMA (Section 3.24). LZMA is the main (as well as the default) algorithm
used in the popular 7z (or 7-Zip) compression software [7z 06]. Both 7z and LZMA are
the creations of Igor Pavlov. The software runs on Windows and is free. Both LZMA
and 7z were designed to provide high compression, fast decompression, and low memory
requirements for decompression.

m  Stephan Wolf made a contribution to Section 4.30.4.

s H.264 (Section 6.8). H.264 is an advanced video codec developed by the ISO and
the ITU as a replacement for the existing video compression standards H.261, H.262,
and H.263. H.264 has the main components of its predecessors, but they have been
extended and improved. The only new component in H.264 is a (wavelet based) filter,
developed specifically to reduce artifacts caused by the fact that individual macroblocks
are compressed separately.

= Section 7.4 is devoted to the WAVE audio format. WAVE (or simply Wave) is the
native file format employed by the Windows opearting system for storing digital audio
data.

= FLAC (Section 7.10). FLAC (free lossless audio compression) is the brainchild of
Josh Coalson who developed it in 1999 based on ideas from Shorten. FLAC was es-
pecially designed for audio compression, and it also supports streaming and archival
of audio data. Coalson started the FLAC project on the well-known sourceforge Web
site [sourceforge.flac 06] by releasing his reference implementation. Since then many
developers have contributed to improving the reference implementation and writing al-
ternative implementations. The FLAC project, administered and coordinated by Josh
Coalson, maintains the software and provides a reference codec and input plugins for
several popular audio players.

s WavPack (Section 7.11, written by David Bryant). WavPack [WavPack 06] is a
completely open, multiplatform audio compression algorithm and software that supports
three compression modes, lossless, high-quality lossy, and a unique hybrid compression
mode. It handles integer audio samples up to 32 bits wide and also 32-bit IEEE floating-
point data [IEEE754 85]. The input stream is partitioned by WavPack into blocks that
can be either mono or stereo and are generally 0.5 seconds long (but the length is actually
flexible). Blocks may be combined in sequence by the encoder to handle multichannel
audio streams. All audio sampling rates are supported by WavPack in all its modes.
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= Monkey’s audio (Section 7.12). Monkey’s audio is a fast, efficient, free, lossless
audio compression algorithm and implementation that offers error detection, tagging,
and external support.

= MPEG-4 ALS (Section 7.13). MPEG-4 Audio Lossless Coding (ALS) is the latest
addition to the family of MPEG-4 audio codecs. ALS can input floating-point audio
samples and is based on a combination of linear prediction (both short-term and long-
term), multichannel coding, and efficient encoding of audio residues by means of Rice
codes and block codes (the latter are also known as block Gilbert-Moore codes, or
BGMC [Gilbert and Moore 59] and [Reznik 04]). Because of this organization, ALS is
not restricted to the encoding of audio signals and can efficiently and losslessly compress
other types of fixed-size, correlated signals, such as medical (ECG and EEG) and seismic
data.

= AAC (Section 7.15). AAC (advanced audio coding) is an extension of the three
layers of MPEG-1 and MPEG-2, which is why it is often called mp4. It started as part of
the MPEG-2 project and was later augmented and extended as part of MPEG-4. Apple
Computer has adopted AAC in 2003 for use in its well-known iPod, which is why many
believe (wrongly) that the acronym AAC stands for apple audio coder.

= Dolby AC-3 (Section 7.16). AC-3, also known as Dolby Digital, stands for Dolby’s
third-generation audio coder. AC-3 is a perceptual audio codec based on the same
principles as the three MPEG-1/2 layers and AAC. The new section included in this
edition concentrates on the special features of AC-3 and what distinguishes it from other
perceptual codecs.

= Portable Document Format (PDF, Section 8.13). PDF is a popular standard for
creating, editing, and printing documents that are independent of any computing plat-
form. Such a document may include text and images (graphics and photos), and its
components are compressed by well-known compression algorithms.

= Section 8.14 (written by Giovanni Motta) covers a little-known but important aspect
of data compression, namely how to compress the differences between two files.

= Hyperspectral data compression (Section 8.15, partly written by Giovanni Motta)
is a relatively new and growing field. Hyperspectral data is a set of data items (called
pixels) arranged in rows and columns where each pixel is a vector. A home digital camera
focuses visible light on a sensor to create an image. In contrast, a camera mounted on
a spy satellite (or a satellite searching for minerals and other resources) collects and
measures radiation of many wavelegths. The intensity of each wavelength is converted
into a number, and the numbers collected from one point on the ground form a vector
that becomes a pixel of the hyperspectral data.

Another pleasant change is the great help I received from Giovanni Motta, David
Bryant, and Cosmin Truta. Each proposed topics for this edition, went over some of
the new material, and came up with constructive criticism. In addition, David wrote
Section 7.11 and Giovanni wrote Section 8.14 and part of Section 8.15.

I would like to thank the following individuals for information about certain topics
and for clearing up certain points. Igor Pavlov for help with 7z and LZMA, Stephan
Wolf for his contribution, Matt Ashland for help with Monkey’s audio, Yann Guidon
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for his help with recursive range reduction (3R), Josh Coalson for help with FLAC, and
Eugene Roshal for help with RAR.

In the first volume of this biography I expressed my gratitude to those individuals
and corporate bodies without whose aid or encouragement it would not have been
undertaken at all; and to those others whose help in one way or another advanced its
progress. With the completion of this volume my obligations are further extended. I
should like to express or repeat my thanks to the following for the help that they have
given and the premissions they have granted.

Christabel Lady Aberconway; Lord Annan; Dr Igor Anrep; ...
—Quentin Bell, Virginia Woolf: A Biography (1972)

Currently, the book’s Web site is part of the author’s Web site, which is located
at http://www.ecs.csun.edu/"dsalomon/. Domain DavidSalomon.name has been re-
served and will always point to any future location of the Web site. The author’s email
address is dsalomon@csun.edu, but email sent to (anyname)@avidSalomon.name will
be forwarded to the author.

Those interested in data compression in general should consult the short section
titled “Joining the Data Compression Community,” at the end of the book, as well as
the following resources:

m  http://compression.ca/,
=  http://www-isl.stanford.edu/"gray/iii.html,
=  http://www.hn.is.uec.ac.jp/ arimura/compression_links.html, and

m  http://datacompression.info/.
(URLs are notoriously short lived, so search the Internet).

People err who think my art comes easily to me.

—Wolfgang Amadeus Mozart

Lakeside, California David Salomon
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I was pleasantly surprised when in December 2002 a message arrived from the editor
asking me to produce the third edition of the book and proposing a deadline of late April
2003. I was hoping for a third edition mainly because the field of data compression has
made great strides since the publication of the second edition, but also for the following
reasons:

Reason 1: The many favorable readers’ comments, of which the following are typical
examples:

First I want to thank you for writing “Data Compression: The Complete Reference.”
It is a wonderful book and I use it as a primary reference.

I wish to add something to the errata list of the 2nd edition, and, if I am allowed,
I would like to make a few comments and suggestions.. ..

—Cosmin Truta, 2002

sir,
i am ismail from india. i am an computer science engineer. i did project in data
compression on that i open the text file. get the keyword (symbols,alphabets,numbers
once contained word). Then sorted the keyword by each characters occurrences in the
text file. Then store the keyword in a file. then following the keyword store the 000
indicator.Then the original text file is read. take the first character of the file.get the
positional value of the character in the keyword. then store the position in binary. if
that binary contains single digit, the triple bit 000 is assigned. the binary con two digit,
the triple bit 001 is assigned. so for 256 ascii need max of 8 digit binary.plus triple bit
.so max needed for the 256th char in keyword is 11 bits. but min need for the first char
in keyworkd is one bit+three bit , four bit. so writing continuously o’s and 1’s in a file.
and then took the 8 by 8 bits and convert to equal ascii character and store in the file.
thus storing keyword + indicator 4+ converted ascii char
can give the compressed file.
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then reverse the process we can get the original file.
These ideas are fully mine.
(See description in Section 3.2).

Reason 2: The errors found by me and by readers in the second edition. They are
listed in the second edition’s Web site, and they have been corrected in the third edition.

Reason 3: The title of the book (originally chosen by the publisher). This title had
to be justified by making the book a complete reference. As a result, new compression
methods and background material have been added to the book in this edition, while the
descriptions of some of the older, obsolete methods have been deleted or “compressed.”
The most important additions and changes are the following:

»  The BMP image file format is native to the Microsoft Windows operating system.
The new Section 1.4.4 describes the simple version of RLE used to compress these files.

m  Section 2.5 on the Golomb code has been completely rewritten to correct mistakes
in the original text. These codes are used in a new, adaptive image compression method
discussed in Section 4.22.

m  Section 2.9.6 has been added to briefly mention an improved algorithm for adaptive
Huffman compression.

m  The PPM lossless compression method of Section 2.18 produces impressive results,
but is not used much in practice because it is slow. Much effort has been spent exploring
ways to speed up PPM or make it more efficient. This edition presents three such efforts,
the PPM* method of Section 2.18.6, PPMZ (Section 2.18.7), and the fast PPM method
of Section 2.18.8. The first two try to explore the effect of unbounded-length contexts
and add various other improvements to the basic PPM algorithm. The third attempts
to speed up PPM by eliminating the use of escape symbols and introducing several
approximations. In addition, Section 2.18.4 has been extended and now contains some
information on two more variants of PPM, namely PPMP and PPMX.

m  The new Section 3.2 describes a simple, dictionary-based compression method.
s LZX, an LZ77 variant for the compression of cabinet files, is the topic of Section 3.7.

= Section 8.14.2 is a short introduction to the interesting concept of file differencing,
where a file is updated and the differences between the file before and after the update
are encoded.

s The popular Deflate method is now discussed in much detail in Section 3.23.
»  The popular PNG graphics file format is described in the new Section 3.25.

m  Section 3.26 is a short description of XMill, a special-purpose compressor for XML
files.

m  Section 4.6 on the DCT has been completely rewritten. It now describes the DCT,
shows two ways to interpret it, shows how the required computations can be simplified,
lists four different discrete cosine transforms, and includes much background material.
As a result, Section 4.8.2 was considerably cut.
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= An N-tree is an interesting data structure (an extension of quadtrees) whose com-
pression is discussed in the new Section 4.30.4.

»  Section 5.19, on JPEG 2000, has been brought up to date.

»  MPEG-4 is an emerging international standard for audiovisual applications. It
specifies procedures, formats, and tools for authoring multimedia content, delivering
it, and consuming (playing and displaying) it. Thus, MPEG-4 is much more than a
compression method. Section 6.6 is s short description of the main features of and tools
included in MPEG-4.

m  The new lossless compression standard approved for DVD-A (audio) is called MLP.
It is the topic of Section 7.7. This MLP should not be confused with the MLP image
compression method of Section 4.21.

m  Shorten, a simple compression algorithm for waveform data in general and for speech
in particular, is a new addition (Section 7.9).

m  SCSU is a new compression algorithm, designed specifically for compressing text
files in Unicode. This is the topic of Section 8.12. The short Section 8.12.1 is devoted
to BOCU-1, a simpler algorithm for Unicode compression.

m  Several sections dealing with old algorithms have either been trimmed or completely
removed due to space considerations. Most of this material is available on the book’s
Web site.

m  All the appendixes have been removed because of space considerations. They are
freely available, in PDF format, at the book’s Web site. The appendixes are (1) the
ASCII code (including control characters); (2) space-filling curves; (3) data structures
(including hashing); (4) error-correcting codes; (5) finite-state automata (this topic is
needed for several compression methods, such as WFA, TFS, and dynamic Markov cod-
ing); (6) elements of probability; and (7) interpolating polynomials.

s A large majority of the exercises have been deleted. The answers to the exercises
have also been removed and are available at the book’s Web site.

I would like to thank Cosmin Truta for his interest, help, and encouragement.
Because of him, this edition is better than it otherwise would have been. Thanks also
go to Martin Cohn and Giovanni Motta for their excellent prereview of the book. Quite
a few other readers have also helped by pointing out errors and omissions in the second
edition.

Currently, the book’s Web site is part of the author’s Web site, which is located
at http://www.ecs.csun.edu/ dsalomon/. Domain BooksByDavidSalomon.com has
been reserved and will always point to any future location of the Web site. The author’s
email address is david.salomon@csun.edu, but it’s been arranged that email sent to
(anyname)@BooksByDavidSalomon. com will be forwarded to the author.

Readers willing to put up with eight seconds of advertisement can be redirected
to the book’s Web site from http://welcome.to/data.compression. Email sent to
data.compression@welcome.to will also be redirected.

Those interested in data compression in general should consult the short section
titled “Joining the Data Compression Community,” at the end of the book, as well as
the following resources:
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= http://compression.ca/,
m  http://www-isl.stanford.edu/"gray/iii.html,
m http://www.hn.is.uec.ac.jp/ arimura/compression_links.html, and

m  http://datacompression.info/.

(URLs are notoriously short lived, so search the Internet).

One consequence of the decision to take this course is that I am, as I set down these
sentences, in the unusual position of writing my preface before the rest of my narrative.
We are all familiar with the after-the-fact tone—weary, self-justificatory, aggrieved,
apologetic—shared by ship captains appearing before boards of inquiry to explain how
they came to run their vessels aground, and by authors composing forewords.
—John Lanchester, The Debt to Pleasure (1996)

Northridge, California David Salomon
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Second Edition

This second edition has come about for three reasons. The first one is the many favorable
readers’ comments, of which the following is an example:

I just finished reading your book on data compression. Such joy.
And as it contains many algorithms in a volume only some 20 mm
thick, the book itself serves as a fine example of data compression!

—Fred Veldmeijer, 1998

The second reason is the errors found by the author and by readers in the first
edition. They are listed in the book’s Web site (see below), and they have been corrected
in the second edition.

The third reason is the title of the book (originally chosen by the publisher). This
title had to be justified by making the book a complete reference. As a result, many
compression methods and much background material have been added to the book in
this edition. The most important additions and changes are the following:

m  Three new chapters have been added. The first is Chapter 5, on the relatively
young (and relatively unknown) topic of wavelets and their applications to image and
audio compression. The chapter opens with an intuitive explanation of wavelets, using
the continuous wavelet transform (CWT). It continues with a detailed example that
shows how the Haar transform is used to compress images. This is followed by a general
discussion of filter banks and the discrete wavelet transform (DWT), and a listing of
the wavelet coefficients of many common wavelet filters. The chapter concludes with
a description of important compression methods that either use wavelets or are based
on wavelets. Included among them are the Laplacian pyramid, set partitioning in hi-
erarchical trees (SPTHT), embedded coding using zerotrees (EZW), the WSQ method
for the compression of fingerprints, and JPEG 2000, a new, promising method for the
compression of still images (Section 5.19).
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m  The second new chapter, Chapter 6, discusses video compression. The chapter
opens with a general description of CRT operation and basic analog and digital video
concepts. It continues with a general discussion of video compression, and it concludes
with a description of MPEG-1 and H.261.

m  Audio compression is the topic of the third new chapter, Chapter 7. The first
topic in this chapter is the properties of the human audible system and how they can
be exploited to achieve lossy audio compression. A discussion of a few simple audio
compression methods follows, and the chapter concludes with a description of the three
audio layers of MPEG-1, including the very popular mp3 format.

Other new material consists of the following:
= Conditional image RLE (Section 1.4.2).
= Scalar quantization (Section 1.6).
s The QM coder used in JPEG, JPEG 2000, and JBIG is now included in Section 2.16.

»  Context-tree weighting is discussed in Section 2.19. Its extension to lossless image
compression is the topic of Section 4.24.

m  Section 3.4 discusses a sliding buffer method called repetition times.
= The troublesome issue of patents is now also included (Section 3.25).

m  The relatively unknown Gray codes are discussed in Section 4.2.1, in connection
with image compression.

= Section 4.3 discusses intuitive methods for image compression, such as subsampling
and vector quantization.

»  The important concept of image transforms is discussed in Section 4.4. The discrete
cosine transform (DCT) is described in detail. The Karhunen-Loéve transform, the
Walsh-Hadamard transform, and the Haar transform are introduced. Section 4.4.5 is a

short digression, discussing the discrete sine transform, a poor, unknown cousin of the
DCT.

s JPEG-LS, a new international standard for lossless and near-lossless image com-
pression, is the topic of the new Section 4.7.

s JBIG2, another new international standard, this time for the compression of bi-level
images, is now found in Section 4.10.

m  Section 4.11 discusses EIDAC, a method for compressing simple images. Its main
innovation is the use of two-part contexts. The intra context of a pixel P consists of
several of its near neighbors in its bitplane. The inter context of P is made up of pixels
that tend to be correlated with P even though they are located in different bitplanes.

m  There is a new Section 4.12 on vector quantization followed by sections on adaptive
vector quantization and on block truncation coding (BTC).

= Block matching is an adaptation of LZ77 (sliding window) for image compression.
It can be found in Section 4.14.
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= Differential pulse code modulation (DPCM) is now included in the new Section 4.23.

= An interesting method for the compression of discrete-tone images is block decom-
position (Section 4.25).

= Section 4.26 discusses binary tree predictive coding (BTPC).
m  Prefix image compression is related to quadtrees. It is the topic of Section 4.27.

»  Another image compression method related to quadtrees is quadrisection. It is
discussed, together with its relatives bisection and octasection, in Section 4.28.

s The section on WFA (Section 4.31) was wrong in the first edition and has been
completely rewritten with much help from Karel Culik and Raghavendra Udupa.

m  Cell encoding is included in Section 4.33.

s DjVu is an unusual method, intended for the compression of scanned documents.
It was developed at Bell Labs (Lucent Technologies) and is described in Section 5.17.

s The new JPEG 2000 standard for still image compression is discussed in the new
Section 5.19.

m  Section 8.4 is a description of the sort-based context similarity method. This method
uses the context of a symbol in a way reminiscent of ACB. It also assigns ranks to
symbols, and this feature relates it to the Burrows-Wheeler method and also to symbol
ranking.

m  Prefix compression of sparse strings has been added to Section 8.5.

s FHM is an unconventional method for the compression of curves. It uses Fibonacci
numbers, Huffman coding, and Markov chains, and it is the topic of Section 8.9.

m  Sequitur, Section 8.10, is a method especially suited for the compression of semistruc-
tured text. It is based on context-free grammars.

= Section 8.11 is a detailed description of edgebreaker, a highly original method for
compressing the connectivity information of a triangle mesh. This method and its various
extensions may become the standard for compressing polygonal surfaces, one of the
most common surface types used in computer graphics. Edgebreaker is an example of a
geometric compression method.

m  All the appendices have been deleted because of space considerations. They are
freely available, in PDF format, at the book’s Web site. The appendices are (1) the
ASCII code (including control characters); (2) space-filling curves; (3) data structures
(including hashing); (4) error-correcting codes; (5) finite-state automata (this topic is
needed for several compression methods, such as WFA, IFS, and dynamic Markov cod-
ing); (6) elements of probability; and (7) interpolating polynomials.

" The answers to the exercises have also been deleted and are available at the book’s
Web site.

Currently, the book’s Web site is part of the author’s Web site, which is located
at http://www.ecs.csun.edu/"dxs/. Domain name BooksByDavidSalomon.com has
been reserved and will always point to any future location of the Web site. The author’s
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email address is david.salomon@csun.edu, but it is planned that any email sent to
(anyname)@BooksByDavidSalomon. com will be forwarded to the author.

Readers willing to put up with eight seconds of advertisement can be redirected
to the book’s Web site from http://welcome.to/data.compression. Email sent to
data.compression@welcome.to will also be redirected.

Those interested in data compression in general should consult the short section
titled “Joining the Data Compression Community,” at the end of the book, as well as
the two URLs http://www.internz.com/compression-pointers.html and
http://www.hn.is.uec.ac.jp/ arimura/compression_links.html.

Northridge, California David Salomon
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Historically, data compression was not one of the first fields of computer science. It
seems that workers in the field needed the first 20 to 25 years to develop enough data
before they felt the need for compression. Today, when the computer field is about 50
years old, data compression is a large and active field, as well as big business. Perhaps
the best proof of this is the popularity of the Data Compression Conference (DCC, see
end of book).

Principles, techniques, and algorithms for compressing different types of data are
being developed at a fast pace by many people and are based on concepts borrowed from
disciplines as varied as statistics, finite-state automata, space-filling curves, and Fourier
and other transforms. This trend has naturally led to the publication of many books on
the topic, which poses the question, Why another book on data compression?

The obvious answer is, Because the field is big and getting bigger all the time,
thereby “creating” more potential readers and rendering existing texts obsolete in just
a few years.

The original reason for writing this book was to provide a clear presentation of
both the principles of data compression and all the important methods currently in
use, a presentation geared toward the nonspecialist. It is the author’s intention to have
descriptions and discussions that can be understood by anyone with some background
in the use and operation of computers. As a result, the use of mathematics is kept to a
minimum and the material is presented with many examples, diagrams, and exercises.
Instead of trying to be rigorous and prove every claim, the text many times says “it can
be shown that ...” or “it can be proved that ....”

The exercises are an especially important feature of the book. They complement the
material and should be worked out by anyone who is interested in a full understanding of
data compression and the methods described here. Almost all the answers are provided
(at the book’s Web page), but the reader should obviously try to work out each exercise
before peeking at the answer.
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Acknowledgments

I would like especially to thank Nelson Beebe, who went meticulously over the entire
text of the first edition and made numerous corrections and suggestions. Many thanks
also go to Christopher M. Brislawn, who reviewed Section 5.18 and gave us permission
to use Figure 5.64; to Karel Culik and Raghavendra Udupa, for their substantial help
with weighted finite automata (WFA); to Jeffrey Gilbert, who went over Section 4.28
(block decomposition); to John A. Robinson, who reviewed Section 4.29 (binary tree
predictive coding); to @yvind Strgmme, who reviewed Section 5.10; to Frans Willems
and Tjalling J. Tjalkins, who reviewed Section 2.19 (context-tree weighting); and to
Hidetoshi Yokoo, for his help with Sections 3.17 and 8.4.

The author would also like to thank Paul Amer, Guy Blelloch, Mark Doyle, Hans
Hagen, Emilio Millan, Haruhiko Okumura, and Vijayakumaran Saravanan, for their help
with errors.

We seem to have a natural fascination with shrinking and expanding objects. Since
our practical ability in this respect is very limited, we like to read stories where people
and objects dramatically change their natural size. Examples are Gulliver’s Travels by
Jonathan Swift (1726), Alice in Wonderland by Lewis Carroll (1865), and Fantastic
Voyage by Isaac Asimov (1966).

Fantastic Voyage started as a screenplay written by the famous writer Isaac Asimov.
While the movie was being produced (it was released in 1966), Asimov rewrote it as
a novel, correcting in the process some of the most glaring flaws in the screenplay.
The plot concerns a group of medical scientists placed in a submarine and shrunk to
microscopic dimensions. They are then injected into the body of a patient in an attempt
to remove a blood clot from his brain by means of a laser beam. The point is that the
patient, Dr. Benes, is the scientist who improved the miniaturization process and made
it practical in the first place.

Because of the success of both the movie and the book, Asimov later wrote Fantastic
Voyage II: Destination Brain, but the latter novel proved a flop.

But before we continue here is a question that you
might have already asked: “OK, but why should |
be interested in data compression?” Very simple:
“DATA COMPRESSION SAVES YOU MONEY!

More interested now? We think you should be. Let

us give you an example of data compression application
that you see every day. Exchanging faxes every day ...

From http://www.rasip.etf.hr/research/compress/index.html

Northridge, California David Salomon
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Introduction

Giambattista della Porta, a Renaissance scientist sometimes known as the professor of
secrets, was the author in 1558 of Magia Naturalis (Natural Magic), a book in which
he discusses many subjects, including demonology, magnetism, and the camera obscura
[della Porta 58]. The book became tremendously popular in the 16th century and went
into more than 50 editions, in several languages beside Latin. The book mentions an
imaginary device that has since become known as the “sympathetic telegraph.” This
device was to have consisted of two circular boxes, similar to compasses, each with a
magnetic needle. Each box was to be labeled with the 26 letters, instead of the usual
directions, and the main point was that the two needles were supposed to be magnetized
by the same lodestone. Porta assumed that this would somehow coordinate the needles
such that when a letter was dialed in one box, the needle in the other box would swing
to point to the same letter.

Needless to say, such a device does not work (this, after all, was about 300 years
before Samuel Morse), but in 1711 a worried wife wrote to the Spectator, a London peri-
odical, asking for advice on how to bear the long absences of her beloved husband. The
adviser, Joseph Addison, offered some practical ideas, then mentioned Porta’s device,
adding that a pair of such boxes might enable her and her husband to communicate
with each other even when they “were guarded by spies and watches, or separated by
castles and adventures.” Mr. Addison then added that, in addition to the 26 letters,
the sympathetic telegraph dials should contain, when used by lovers, “several entire
words which always have a place in passionate epistles.” The message “I love you,” for
example, would, in such a case, require sending just three symbols instead of ten.

A woman seldom asks advice before
she has bought her wedding clothes.

—Joseph Addison

This advice is an early example of text compression achieved by using short codes
for common messages and longer codes for other messages. Even more importantly, this
shows how the concept of data compression comes naturally to people who are interested
in communications. We seem to be preprogrammed with the idea of sending as little
data as possible in order to save time.
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Data compression is the process of converting an input data stream (the source
stream or the original raw data) into another data stream (the output, the bitstream,
or the compressed stream) that has a smaller size. A stream is either a file or a buffer
in memory. Data compression is popular for two reasons: (1) People like to accumulate
data and hate to throw anything away. No matter how big a storage device one has,
sooner or later it is going to overflow. Data compression seems useful because it delays
this inevitability. (2) People hate to wait a long time for data transfers. When sitting at
the computer, waiting for a Web page to come in or for a file to download, we naturally
feel that anything longer than a few seconds is a long time to wait.

The field of data compression is often called source coding. We imagine that the
input symbols (such as bits, ASCII codes, bytes, audio samples, or pixel values) are
emitted by a certain information source and have to be coded before being sent to their
destination. The source can be memoryless, or it can have memory. In the former case,
each symbol is independent of its predecessors. In the latter case, each symbol depends
on some of its predecessors and, perhaps, also on its successors, so they are correlated.
A memoryless source is also termed “independent and identically distributed” or IIID.

Data compression has come of age in the last 20 years. Both the quantity and the
quality of the body of literature in this field provides ample proof of this. However, the
need for compressing data has been felt in the past, even before the advent of computers,
as the following quotation suggests:

I have made this letter longer than usual
because I lack the time to make it shorter.

—Blaise Pascal

There are many known methods for data compression. They are based on different
ideas, are suitable for different types of data, and produce different results, but they are
all based on the same principle, namely they compress data by removing redundancy
from the original data in the source file. Any nonrandom data has some structure,
and this structure can be exploited to achieve a smaller representation of the data, a
representation where no structure is discernible. The terms redundancy and structure
are used in the professional literature, as well as smoothness, coherence, and correlation,;
they all refer to the same thing. Thus, redundancy is a key concept in any discussion of
data compression.

Exercise Intro.1l: (Fun) Find English words that contain all five vowels “aeiou” in
their original order.

In typical English text, for example, the letter E appears very often, while Z is
rare (Tables Intro.1 and Intro.2). This is called alphabetic redundancy, and it suggests
assigning variable-size codes to the letters, with E getting the shortest code and Z getting
the longest one. Another type of redundancy, contextual redundancy, is illustrated by
the fact that the letter Q is almost always followed by the letter U (i.e., that certain
digrams and trigrams are more common in plain English than others). Redundancy in
images is illustrated by the fact that in a nonrandom image, adjacent pixels tend to have
similar colors.

Section 2.1 discusses the theory of information and presents a rigorous definition of
redundancy. However, even without a precise definition for this term, it is intuitively
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Letter  Freq. Prob. Letter  Freq. Prob.

A 51060 0.0721 E 86744 0.1224

B 17023  0.0240 T 64364 0.0908

C 27937 0.0394 I 55187  0.0779

D 26336 0.0372 S 51576 0.0728

E 86744 0.1224 A 51060 0.0721

F 19302 0.0272 0] 48277 0.0681

G 12640 0.0178 N 45212 0.0638

H 31853 0.0449 R 45204  0.0638

I 55187 0.0779 H 31853 0.0449

J 923 0.0013 L 30201 0.0426

K 3812  0.0054 C 27937 0.0394

L 30201 0.0426 D 26336 0.0372

M 20002 0.0282 P 20572 0.0290

N 45212 0.0638 M 20002 0.0282

0 48277  0.0681 F 19302 0.0272

P 20572 0.0290 B 17023  0.0240

Q 1611  0.0023 U 16687 0.0235

R 45204 0.0638 G 12640 0.0178

S 51576 0.0728 W 9244  0.0130

T 64364 0.0908 Y 8953 0.0126

U 16687 0.0235 A% 6640 0.0094

\Y 6640 0.0094 X 5465 0.0077

) W 9244  0.0130 K 3812  0.0054

g X 5465 0.0077 Z 1847  0.0026

‘*5 Y 8953 0.0126 Q 1611 0.0023

.E Z 1847  0.0026 J 923 0.0013
3

Frequeua:%es and frobabilities of the 26 letters in a previous edition of this book. The histogram
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Char.  Freq. Prob. Char. Freq. Prob. Char. Freq. Prob.

e 85537  0.099293 X 5238 0.006080 F 1192 0.001384
t 60636 0.070387 | 4328 0.005024 H 993 0.001153
i 53012  0.061537 - 4029 0.004677 B 974 0.001131
S 49705 0.057698 ) 3936  0.004569 W 971 0.001127
a 49008 0.056889 ( 3894  0.004520 + 923 0.001071
o 47874  0.055573 T 3728 0.004328 ! 895 0.001039
n 44527  0.051688 k 3637 0.004222 # 856 0.000994
T 44387 0.051525 3 2907 0.003374 D 836  0.000970
h 30860 0.035823 4 2582  0.002997 R 817  0.000948
1 28710 0.033327 5 2501  0.002903 M 805 0.000934
c 26041 0.030229 6 2190 0.002542 ; 761 0.000883
d 25500 0.029601 I 2175 0.002525 / 698  0.000810
m 19197 0.022284 - 2143 0.002488 N 685  0.000795
\ 19140 0.022218 : 2132 0.002475 G 566  0.000657
p 19055 0.022119 A 2052  0.002382 j 508  0.000590
f 18110 0.021022 9 1953  0.002267 @ 460 0.000534
u 16463 0.019111 [ 1921  0.002230 Z 417  0.000484
b 16049 0.018630 C 1896  0.002201 J 415  0.000482
. 12864 0.014933 ] 1881 0.002183 0] 403  0.000468
1 12335 0.014319 ’ 1876 0.002178 A% 261 0.000303
g 12074  0.014016 S 1871 0.002172 X 227 0.000264
0 10866 0.012613 _ 1808  0.002099 U 224 0.000260
, 9919 0.011514 7 1780  0.002066 ? 177 0.000205
& 8969 0.010411 8 1717 0.001993 K 175 0.000203
y 8796 0.010211 ‘ 1577 0.001831 % 160  0.000186
w 8273 0.009603 = 1566 0.001818 Y 157 0.000182
$ 7659  0.008891 P 1517 0.001761 Q 141 0.000164
} 6676 0.007750 L 1491 0.001731 > 137 0.000159
{ 6676 0.007750 q 1470 0.001706 * 120 0.000139
v 6379 0.007405 z 1430 0.001660 < 99 0.000115
2 5671  0.006583 E 1207  0.001401 7 8 0.000009

Frequencies and probabilities of the 93 characters in a prepublication previous edition of this
book, containing 861,462 characters.

Table Intro.2: Frequencies and Probabilities of Characters.
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clear that a variable-size code has less redundancy than a fixed-size code (or no redun-
dancy at all). Fixed-size codes make it easier to work with text, so they are useful, but
they are redundant.

The idea of compression by reducing redundancy suggests the general law of data
compression, which is to “assign short codes to common events (symbols or phrases)
and long codes to rare events.” There are many ways to implement this law, and an
analysis of any compression method shows that, deep inside, it works by obeying the
general law.

Compressing data is done by changing its representation from inefficient (i.e., long)
to efficient (short). Compression is therefore possible only because data is normally
represented in the computer in a format that is longer than absolutely necessary. The
reason that inefficient (long) data representations are used all the time is that they make
it easier to process the data, and data processing is more common and more important
than data compression. The ASCII code for characters is a good example of a data
representation that is longer than absolutely necessary. It uses 7-bit codes because
fixed-size codes are easy to work with. A variable-size code, however, would be more
efficient, since certain characters are used more than others and so could be assigned
shorter codes.

In a world where data is always represented by its shortest possible format, there
would therefore be no way to compress data. Instead of writing books on data com-
pression, authors in such a world would write books on how to determine the shortest
format for different types of data.

A Word to the Wise ...

The main aim of the field of data compression is, of course, to develop methods
for better and faster compression. However, one of the main dilemmas of the art
of data compression is when to stop looking for better compression. Experience
shows that fine-tuning an algorithm to squeeze out the last remaining bits of
redundancy from the data gives diminishing returns. Modifying an algorithm
to improve compression by 1% may increase the run time by 10% and the com-
plexity of the program by more than that. A good way out of this dilemma was
taken by Fiala and Greene (Section 3.9). After developing their main algorithms
A1l and A2, they modified them to produce less compression at a higher speed,
resulting in algorithms B1 and B2. They then modified A1 and A2 again, but
in the opposite direction, sacrificing speed to get slightly better compression.

The principle of compressing by removing redundancy also answers the following
question: “Why is it that an already compressed file cannot be compressed further?”
The answer, of course, is that such a file has little or no redundancy, so there is nothing
to remove. An example of such a file is random text. In such text, each letter occurs with
equal probability, so assigning them fixed-size codes does not add any redundancy. When
such a file is compressed, there is no redundancy to remove. (Another answer is that
if it were possible to compress an already compressed file, then successive compressions
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would reduce the size of the file until it becomes a single byte, or even a single bit. This,
of course, is ridiculous since a single byte cannot contain the information present in an
arbitrarily large file.) The reader should also consult page 893 for an interesting twist
on the topic of compressing random data.

Since random data has been mentioned, let’s say a few more words about it. Nor-
mally, it is rare to have a file with random data, but there is one good example—an
already compressed file. Someone owning a compressed file normally knows that it is
already compressed and would not attempt to compress it further, but there is one
exception—data transmission by modems. Modern modems contain hardware to auto-
matically compress the data they send, and if that data is already compressed, there will
not be further compression. There may even be expansion. This is why a modem should
monitor the compression ratio “on the fly,” and if it is low, it should stop compressing
and should send the rest of the data uncompressed. The V.42bis protocol (Section 3.21)
is a good example of this technique.

The following simple argument illustrates the essence of the statement “Data com-
pression is achieved by reducing or removing redundancy in the data.” The argument
shows that most data files cannot be compressed, no matter what compression method
is used. This seems strange at first because we compress our data files all the time.
The point is that most files cannot be compressed because they are random or close
to random and therefore have no redundancy. The (relatively) few files that can be
compressed are the ones that we want to compress; they are the files we use all the time.
They have redundancy, are nonrandom and are therefore useful and interesting.

Here is the argument. Given two different files A and B that are compressed to files
C and D, respectively, it is clear that C' and D must be different. If they were identical,
there would be no way to decompress them and get back file A or file B.

Suppose that a file of size n bits is given and we want to compress it efficiently.
Any compression method that can compress this file to, say, 10 bits would be welcome.
Even compressing it to 11 bits or 12 bits would be great. We therefore (somewhat
arbitrarily) assume that compressing such a file to half its size or better is considered
good compression. There are 2™ n-bit files and they would have to be compressed into
2™ different files of sizes less than or equal to n/2. However, the total number of these
files is

N = 1+2+4+.”+2n/2 :21+n/2_1%21+n/27

so only N of the 2™ original files have a chance of being compressed efficiently. The
problem is that N is much smaller than 2. Here are two examples of the ratio between
these two numbers.

For n = 100 (files with just 100 bits), the total number of files is 2!% and the
number of files that can be compressed efficiently is 2°'. The ratio of these numbers is
the ridiculously small fraction 274 ~ 1.78 x 10715,

For n = 1000 (files with just 1000 bits, about 125 bytes), the total number of files
is 21090 and the number of files that can be compressed efficiently is 2°9'. The ratio of
these numbers is the incredibly small fraction 27499 ~ 9.82x107°1.

Most files of interest are at least some thousands of bytes long. For such files,
the percentage of files that can be efficiently compressed is so small that it cannot be
computed with floating-point numbers even on a supercomputer (the result comes out
as zero).
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The 50% figure used here is arbitrary, but even increasing it to 90% isn’t going to
make a significant difference. Here is why. Assuming that a file of n bits is given and
that 0.9n is an integer, the number of files of sizes up to 0.9n is

20 + 21 + . + 20‘911 — 21+0.9n _ 1 ~ 21+0.9n.

For n = 100, there are 2'%° files and 2799 = 2! can be compressed well. The ratio of
these numbers is 291 /2100 = 279 2 0.00195. For n = 1000, the corresponding fraction is
2901 /91000 — 9799 ~ 1,578 x 1073Y. These are still extremely small fractions.

It is therefore clear that no compression method can hope to compress all files or
even a significant percentage of them. In order to compress a data file, the compression
algorithm has to examine the data, find redundancies in it, and try to remove them.
The redundancies in data depend on the type of data (text, images, sound, etc.), which
is why a new compression method has to be developed for a specific type of data and
it performs best on this type. There is no such thing as a universal, efficient data
compression algorithm.

Data compression has become so important that some researchers (see, for exam-
ple, [Wolff 99]) have proposed the SP theory (for “simplicity” and “power”), which
suggests that all computing is compression! Specifically, it says: Data compression may
be interpreted as a process of removing unnecessary complexity (redundancy) in infor-
mation, and thereby maximizing simplicity while preserving as much as possible of its
nonredundant descriptive power. SP theory is based on the following conjectures:

s All kinds of computing and formal reasoning may usefully be understood as infor-
mation compression by pattern matching, unification, and search.

m  The process of finding redundancy and removing it may always be understood at
a fundamental level as a process of searching for patterns that match each other, and
merging or unifying repeated instances of any pattern to make one.

This book discusses many compression methods, some suitable for text and others
for graphical data (still images or movies) or for audio. Most methods are classified
into four categories: run length encoding (RLE), statistical methods, dictionary-based
(sometimes called LZ) methods, and transforms. Chapters 1 and 8 describe methods
based on other principles.

Before delving into the details, we discuss important data compression terms.

m  The compressor or encoder is the program that compresses the raw data in the input
stream and creates an output stream with compressed (low-redundancy) data. The
decompressor or decoder converts in the opposite direction. Note that the term encoding
is very general and has several meanings, but since we discuss only data compression,
we use the name encoder to mean data compressor. The term codec is sometimes used
to describe both the encoder and the decoder. Similarly, the term companding is short
for “compressing/expanding.”

m  The term “stream” is used throughout this book instead of “file.” “Stream” is
a more general term because the compressed data may be transmitted directly to the
decoder, instead of being written to a file and saved. Also, the data to be compressed
may be downloaded from a network instead of being input from a file.
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= For the original input stream, we use the terms unencoded, raw, or original data.
The contents of the final, compressed, stream are considered the encoded or compressed
data. The term bitstream is also used in the literature to indicate the compressed stream.

The Gold Bug

Here, then, we have, in the very beginning, the groundwork for something
more than a mere guess. The general use which may be made of the table is
obvious—but, in this particular cipher, we shall only very partially require its
aid. As our predominant character is 8, we will commence by assuming it as the
“e” of the natural alphabet. To verify the supposition, let us observe if the 8 be
seen often in couples—for “e” is doubled with great frequency in English—in
such words, for example, as “meet,” “fleet,” “speed,” “seen,” “been,” “agree,”
etc. In the present instance we see it doubled no less than five times, although
the cryptograph is brief.

—Edgar Allan Poe

s A nonadaptive compression method is rigid and does not modify its operations, its
parameters, or its tables in response to the particular data being compressed. Such
a method is best used to compress data that is all of a single type. Examples are
the Group 3 and Group 4 methods for facsimile compression (Section 2.13). They are
specifically designed for facsimile compression and would do a poor job compressing
any other data. In contrast, an adaptive method examines the raw data and modifies
its operations and/or its parameters accordingly. An example is the adaptive Huffman
method of Section 2.9. Some compression methods use a 2-pass algorithm, where the
first pass reads the input stream to collect statistics on the data to be compressed, and
the second pass does the actual compressing using parameters set by the first pass. Such
a method may be called semiadaptive. A data compression method can also be locally
adaptive, meaning it adapts itself to local conditions in the input stream and varies this
adaptation as it moves from area to area in the input. An example is the move-to-front
method (Section 1.5).

s Lossy/lossless compression: Certain compression methods are lossy. They achieve
better compression by losing some information. When the compressed stream is decom-
pressed, the result is not identical to the original data stream. Such a method makes
sense especially in compressing images, movies, or sounds. If the loss of data is small, we
may not be able to tell the difference. In contrast, text files, especially files containing
computer programs, may become worthless if even one bit gets modified. Such files
should be compressed only by a lossless compression method. [Two points should be
mentioned regarding text files: (1) If a text file contains the source code of a program,
consecutive blank spaces can often be replaced by a single space. (2) When the output
of a word processor is saved in a text file, the file may contain information about the dif-
ferent fonts used in the text. Such information may be discarded if the user is interested
in saving just the text.]
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= Cascaded compression: The difference between lossless and lossy codecs can be
illuminated by considering a cascade of compressions. Imagine a data file A that has
been compressed by an encoder X, resulting in a compressed file B. It is possible,
although pointless, to pass B through another encoder Y, to produce a third compressed
file C. The point is that if methods X and Y are lossless, then decoding C' by Y will
produce an exact B, which when decoded by X will yield the original file A. However,
if any of the compression algorithms is lossy, then decoding C' by Y may produce a file
B’ different from B. Passing B’ through X may produce something very different from
A and may also result in an error, because X may not be able to read B’.

m  Perceptive compression: A lossy encoder must take advantage of the special type
of data being compressed. It should delete only data whose absence would not be
detected by our senses. Such an encoder must therefore employ algorithms based on
our understanding of psychoacoustic and psychovisual perception, so it is often referred
to as a perceptive encoder. Such an encoder can be made to operate at a constant
compression ratio, where for each x bits of raw data, it outputs y bits of compressed
data. This is convenient in cases where the compressed stream has to be transmitted
at a constant rate. The trade-off is a variable subjective quality. Parts of the original
data that are difficult to compress may, after decompression, look (or sound) bad. Such
parts may require more than y bits of output for x bits of input.

n  Symmetrical compression is the case where the compressor and decompressor use
basically the same algorithm but work in “opposite” directions. Such a method makes
sense for general work, where the same number of files is compressed as is decompressed.
In an asymmetric compression method, either the compressor or the decompressor may
have to work significantly harder. Such methods have their uses and are not necessarily
bad. A compression method where the compressor executes a slow, complex algorithm
and the decompressor is simple is a natural choice when files are compressed into an
archive, where they will be decompressed and used very often. The opposite case is
useful in environments where files are updated all the time and backups are made.
There is a small chance that a backup file will be used, so the decompressor isn’t used
very often.

Like the ski resort full of girls hunting for husbands and husbands hunting for
girls, the situation is not as symmetrical as it might seem.

—Alan Lindsay Mackay, lecture, Birckbeck College, 1964

Exercise Intro.2: Give an example of a compressed file where good compression is
important but the speed of both compressor and decompressor isn’t important.

s Many modern compression methods are asymmetric. Often, the formal description
(the standard) of such a method consists of the decoder and the format of the compressed
stream, but does not discuss the operation of the encoder. Any encoder that generates a
correct compressed stream is considered compliant, as is also any decoder that can read
and decode such a stream. The advantage of such a description is that anyone is free to
develop and implement new, sophisticated algorithms for the encoder. The implementor
need not even publish the details of the encoder and may consider it proprietary. If a
compliant encoder is demonstrably better than competing encoders, it may become a
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commercial success. In such a scheme, the encoder is considered algorithmic, while the
decoder, which is normally much simpler, is termed deterministic. A good example of
this approach is the MPEG-1 audio compression method (Section 7.14).

» A data compression method is called universal if the compressor and decompressor
do not know the statistics of the input stream. A universal method is optimal if the
compressor can produce compression factors that asymptotically approach the entropy
of the input stream for long inputs.

m  The term file differencing refers to any method that locates and compresses the
differences between two files. Imagine a file A with two copies that are kept by two
users. When a copy is updated by one user, it should be sent to the other user, to keep
the two copies identical. Instead of sending a copy of A, which may be big, a much
smaller file containing just the differences, in compressed format, can be sent and used
at the receiving end to update the copy of A. Section 8.14.2 discusses some of the details
and shows why compression can be considered a special case of file differencing. Note
that the term “differencing” is used in Section 1.3.1 to describe a completely different
compression method.

»  Most compression methods operate in the streaming mode, where the codec inputs
a byte or several bytes, processes them, and continues until an end-of-file is sensed.
Some methods, such as Burrows-Wheeler (Section 8.1), work in the block mode, where
the input stream is read block by block and each block is encoded separately. The block
size in this case should be a user-controlled parameter, since its size may greatly affect
the performance of the method.

m  Most compression methods are physical. They look only at the bits in the input
stream and ignore the meaning of the data items in the input (e.g., the data items
may be words, pixels, or audio samples). Such a method translates one bit stream into
another, shorter, one. The only way to make sense of the output stream (to decode it)
is by knowing how it was encoded. Some compression methods are logical. They look at
individual data items in the source stream and replace common items with short codes.
Such a method is normally special purpose and can be used successfully on certain types
of data only. The pattern substitution method described on page 27 is an example of a
logical compression method.

" Compression performance: Several measures are commonly used to express the
performance of a compression method.

1. The compression ratio is defined as

size of the output stream

Compression ratio = — - .
size of the input stream

A value of 0.6 means that the data occupies 60% of its original size after compression.
Values greater than 1 imply an output stream bigger than the input stream (negative
compression). The compression ratio can also be called bpb (bit per bit), since it equals
the number of bits in the compressed stream needed, on average, to compress one bit in
the input stream. In image compression, the same term, bpb stands for “bits per pixel.”
In modern, efficient text compression methods, it makes sense to talk about bpc (bits
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per character)—the number of bits it takes, on average, to compress one character in
the input stream.

Two more terms should be mentioned in connection with the compression ratio.
The term bitrate (or “bit rate”) is a general term for bpb and bpc. Thus, the main
goal of data compression is to represent any given data at low bit rates. The term bit
budget refers to the functions of the individual bits in the compressed stream. Imagine
a compressed stream where 90% of the bits are variable-size codes of certain symbols,
and the remaining 10% are used to encode certain tables. The bit budget for the tables
is 10%.

2. The inverse of the compression ratio is called the compression factor:

) size of the input stream
Compression factor =

size of the output stream’

In this case, values greater than 1 indicate compression and values less than 1 imply
expansion. This measure seems natural to many people, since the bigger the factor,
the better the compression. This measure is distantly related to the sparseness ratio, a
performance measure discussed in Section 5.6.2.

3. The expression 100 x (1 — compression ratio) is also a reasonable measure of com-
pression performance. A value of 60 means that the output stream occupies 40% of its
original size (or that the compression has resulted in savings of 60%).

4. In image compression, the quantity bpp (bits per pixel) is commonly used. It equals
the number of bits needed, on average, to compress one pixel of the image. This quantity
should always be compared with the bpp before compression.

5. The compression gain is defined as

reference size
100log, —,
compressed size

where the reference size is either the size of the input stream or the size of the compressed
stream produced by some standard lossless compression method. For small numbers z,
it is true that log,(1 + x) &~ x, so a small change in a small compression gain is very
similar to the same change in the compression ratio. Because of the use of the logarithm,
two compression gains can be compared simply by subtracting them. The unit of the
compression gain is called percent log ratio and is denoted by 3.

6. The speed of compression can be measured in cycles per byte (CPB). This is the aver-
age number of machine cycles it takes to compress one byte. This measure is important
when compression is done by special hardware.

7. Other quantities, such as mean square error (MSE) and peak signal to noise ratio
(PSNR), are used to measure the distortion caused by lossy compression of images and
movies. Section 4.2.2 provides information on those.

8. Relative compression is used to measure the compression gain in lossless audio com-
pression methods, such as MLP (Section 7.7). This expresses the quality of compression
by the number of bits each audio sample is reduced.

m  The Calgary Corpus is a set of 18 files traditionally used to test data compression
algorithms and implementations. They include text, image, and object files, for a total
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Name Size Description Type
bib 111,261 A bibliography in UNIX refer format Text
bookl 768,771 Text of T. Hardy’s Far From the Madding Crowd Text
book2 610,856 Ian Witten’s Principles of Computer Speech Text
geo 102,400 Geological seismic data Data
news 377,109 A Usenet news file Text
objl 21,504 VAX object program Obj
obj2 246,814 Macintosh object code Obj
paperl 53,161 A technical paper in troff format Text
paper2 82,199 Same Text
pic 513,216 Fax image (a bitmap) Image
progc 39,611 A source program in C Source
progl 71,646 A source program in LISP Source
progp 49,379 A source program in Pascal Source
trans 93,695 Document teaching how to use a terminal Text

Table Intro.3: The Calgary Corpus.

of more than 3.2 million bytes (Table Intro.3). The corpus can be downloaded by
anonymous ftp from [Calgary 06].

s The Canterbury Corpus (Table Intro.4) is another collection of files introduced in
1997 to provide an alternative to the Calgary corpus for evaluating lossless compression
methods. The concerns leading to the new corpus were as follows:

1. The Calgary corpus has been used by many researchers to develop, test, and compare
many compression methods, and there is a chance that new methods would unintention-
ally be fine-tuned to that corpus. They may do well on the Calgary corpus documents
but poorly on other documents.

2. The Calgary corpus was collected in 1987 and is getting old. “Typical” documents
change over a period of decades (e.g., html documents did not exist until recently), and
any body of documents used for evaluation purposes should be examined from time to
time.

3. The Calgary corpus is more or less an arbitrary collection of documents, whereas a
good corpus for algorithm evaluation should be selected carefully.

The Canterbury corpus started with about 800 candidate documents, all in the pub-
lic domain. They were divided into 11 classes, representing different types of documents.
A representative “average” document was selected from each class by compressing every
file in the class using different methods and selecting the file whose compression was clos-
est to the average (as determined by statistical regression). The corpus is summarized
in Table Intro.4 and can be obtained from [Canterbury 06].

The last three files constitute the beginning of a random collection of larger files.
More files are likely to be added to it.

s The probability model. This concept is important in statistical data compression
methods. In such a method, a model for the data has to be constructed before com-
pression can begin. A typical model may be built by reading the entire input stream,



Introduction

13

Description File name Size (bytes)
English text (Alice in Wonderland) alice29.txt 152,089
Fax images ptth 513,216
C source code fields.c 11,150
Spreadsheet files kennedy.xls 1,029,744
SPARC executables sum 38,666
Technical document lcet10.txt 426,754
English poetry (“Paradise Lost”) plrabn12.txt 481,861
HTML document cp.html 24,603
LISP source code grammar.lsp 3,721
GNU manual pages xargs.1 4,227
English play (As You Like It) asyoulik.txt 125,179
Complete genome of the E. coli bacterium E.Coli 4,638,690
The King James version of the Bible bible.txt 4,047,392
The CIA World Fact Book world192.txt 2,473,400

Table Intro.4: The Canterbury Corpus.

counting the number of times each symbol appears (its frequency of occurrence), and
computing the probability of occurrence of each symbol. The data stream is then input
again, symbol by symbol, and is compressed using the information in the probability
model. A typical model is shown in Table 2.47, page 115.

Reading the entire input stream twice is slow, which is why practical compres-
sion methods use estimates, or adapt themselves to the data as it is being input and
compressed. It is easy to scan large quantities of, say, English text and calculate the
frequencies and probabilities of every character. This information can later serve as an
approximate model for English text and can be used by text compression methods to
compress any English text. It is also possible to start by assigning equal probabilities to
all the symbols in an alphabet, then reading symbols and compressing them, and, while
doing that, also counting frequencies and changing the model as compression progresses.
This is the principle behind adaptive compression methods.

[End of data compression terms.|

The concept of data reliability and integrity (page 102) is in some sense the opposite
of data compression. Nevertheless, the two concepts are very often related since any good
data compression program should generate reliable code and so should be able to use
error-detecting and error-correcting codes.

The intended readership of this book is those who have a basic knowledge of com-
puter science; who know something about programming and data structures; who feel
comfortable with terms such as bit, mega, ASCII, file, I/O, and binary search; and
who want to know how data is compressed. The necessary mathematical background is
minimal and is limited to logarithms, matrices, polynomials, differentiation/integration,
and the concept of probability. This book is not intended to be a guide to software
implementors and has few programs.
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The following URLs have useful links and pointers to the many data compression
resources available on the Internet and elsewhere:

http://www.hn.is.uec.ac.jp/ arimura/compression_links.html
http://cise.edu.mie-u.ac.jp/ okumura/compression.html
http://compression.ca/ (mostly comparisons), and http://datacompression.info/

The latter URL has a wealth of information on data compression, including tuto-
rials, links to workers in the field, and lists of books. The site is maintained by Mark
Nelson.

Reference [Okumura 98] discusses the history of data compression in Japan.

Data Compression Resources

A vast number of resources on data compression is available. Any Internet search
under “data compression,” “lossless data compression,” “image compression,” “audio
compression,” and similar topics returns at least tens of thousands of results. Traditional
(printed) resources range from general texts and texts on specific aspects or particular
methods, to survey articles in magazines, to technical reports and research papers in
scientific journals. Following is a short list of (mostly general) books, sorted by date of

publication.

W

Khalid Sayood, Introduction to Data Compression, Morgan Kaufmann, 3rd edition
(2005).

Ida Mengyi Pu, Fundamental Data Compression, Butterworth-Heinemann (2005).

Darrel Hankerson, Introduction to Information Theory and Data Compression, Chap-
man & Hall (CRC), 2nd edition (2003).

Peter Symes, Digital Video Compression, McGraw-Hill/TAB Electronics (2003).

Charles Poynton, Digital Video and HDTV Algorithms and Interfaces, Morgan
Kaufmann (2003).

Tain E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for
Next Generation Multimedia, John Wiley and Sons (2003).

Khalid Sayood, Lossless Compression Handbook, Academic Press (2002).

Touradj Ebrahimi and Fernando Pereira, The MPEG-/ Book, Prentice Hall (2002).

Adam Drozdek, Elements of Data Compression, Course Technology (2001).

David Taubman and Michael Marcellin (Editors), JPEG2000: Image Compression
Fundamentals, Standards and Practice, Springer Verlag (2001).

Kamisetty Ramam Rao, The Transform and Data Compression Handbook, CRC
(2000).

Tan H. Witten, Alistair Moffat, and Timothy C. Bell, Managing Gigabytes: Com-
pressing and Indexing Documents and Images, Morgan Kaufmann, 2nd edition (1999).

Peter Wayner, Compression Algorithms for Real Programmers, Morgan Kaufmann
(1999).

John Miano, Compressed Image File Formats: JPEG, PNG, GIF, XBM, BMP,
ACM Press and Addison-Wesley Professional (1999).

Mark Nelson and Jean-Loup Gailly, The Data Compression Book, M&T Books, 2nd
edition (1995).

William B. Pennebaker and Joan L. Mitchell, JPEG: Still Image Data Compression
Standard, Springer Verlag (1992).
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Timothy C. Bell, John G. Cleary, and Ian H. Witten, Text Compression, Prentice
Hall (1990).

James A. Storer, Data Compression: Methods and Theory, Computer Science Press
(1988).

John Woods, ed., Subband Coding, Kluwer Academic Press (1990).

The symbol “)” is used to indicate a blank space in places where spaces may lead
to ambiguity.

Some readers called into question the title of this book. What does it mean for a
work of this kind to be complete, and how complete is this book? Here is my opinion
on the matter. I like to believe that if the entire field of data compression were (God
forbid) to be destroyed, a substantial part of it could be reconstructed from this work.
Naturally, I don’t compare myself to James Joyce, but his works provide us with a
similar example. He liked to claim that if the Dublin of his time were to be destroyed,
it could be reconstructed from his works.

Readers who would like to get an idea of the effort it took to write this book should
consult the Colophon.

The author welcomes any comments, suggestions, and corrections. They should
be sent to dsalomon@csun.edu. In case of no response, readers should try the email
address (anything)@DavidSalomon.name.

Resemblances undoubtedly exist between publishing and
the slave trade, but it's not only authors who get sold.

—Anthony Powell, Books Do Furnish A Room (1971)
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1
Basic Techniques

1.1 Intuitive Compression

Data is compressed by reducing its redundancy, but this also makes the data less reliable,
more prone to errors. Increasing the integrity of data, on the other hand, is done
by adding check bits and parity bits, a process that increases the size of the data,
thereby increasing redundancy. Data compression and data reliability are therefore
opposites, and it is interesting to note that the latter is a relatively recent field, whereas
the former existed even before the advent of computers. The sympathetic telegraph,
discussed in the Preface, the Braille code of 1820 (Section 1.1.1), and the Morse code
of 1838 (Table 2.1) use simple, intuitive forms of compression. It therefore seems that
reducing redundancy comes naturally to anyone who works on codes, but increasing it
is something that “goes against the grain” in humans. This section discusses simple,
intuitive compression methods that have been used in the past. Today these methods
are mostly of historical interest, since they are generally inefficient and cannot compete
with the modern compression methods developed during the last several decades.

1.1.1 Braille

This well-known code, which enables the blind to read, was developed by Louis Braille
in the 1820s and is still in common use today, after having been modified several times.
Many books in Braille are available from the National Braille Press. The Braille code
consists of groups (or cells) of 3 x 2 dots each, embossed on thick paper. Each of the 6
dots in a group may be flat or raised, implying that the information content of a group
is equivalent to 6 bits, resulting in 64 possible groups. The letters (Table 1.1), digits,
and common punctuation marks do not require all 64 codes, which is why the remaining
groups may be used to code common words—such as and, for, and of—and common
strings of letters—such as ound, ation and th (Table 1.2).
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Table 1.1: The 26 Braille Letters.

and for of the with ch gh sh th

Table 1.2: Some Words and Strings in Braille.

Redundancy in Everyday Situations

Even though we don’t unnecessarily increase redundancy in our data, we use
redundant data all the time, mostly without noticing it. Here are some examples:

All natural languages are redundant. A Portuguese who does not speak Italian
may read an Italian newspaper and still understand most of the news because he
recognizes the basic form of many Italian verbs and nouns and because most of the
text he does not understand is superfluous (i.e., redundant).

PIN is an acronym for “Personal Identification Number,” but banks always ask
you for your “PIN number.” SALT was an acronym for “Strategic Arms Limitations
Talks,” but TV announcers in the 1970s kept talking about the “SALT Talks.” These
are just two examples illustrating how natural it is to be redundant in everyday
situations. More examples can be found at URL
http://www.corsinet.com/braincandy/twice.html

o Exercise 1.1: Find a few more everyday redundant phrases.

The amount of compression achieved by Braille is small but important, because
books in Braille tend to be very large (a single group covers the area of about ten
printed letters). Even this modest compression comes with a price. If a Braille book is
mishandled or gets old and some dots are flattened, serious reading errors may result
since every possible group is used.

(Windots2, from [windots 06], iBraile from [sighted 06], and Duzbury Braille Trans-
lator, from [afb 06], are current programs for those wanting to experiment with Braille.)

1.1.2 Irreversible Text Compression

Sometimes it is acceptable to “compress” text by simply throwing away some informa-
tion. This is called irreversible text compression or compaction. The decompressed text
will not be identical to the original, so such methods are not general purpose; they can
only be used in special cases.

A run of consecutive blank spaces may be replaced by a single space. This may be
acceptable in literary texts and in most computer programs, but it should not be used
when the data is in tabular form.
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In extreme cases all text characters except letters and spaces may be thrown away,
and the letters may be case flattened (converted to all lower- or all uppercase). This
will leave just 27 symbols, so a symbol can be encoded in 5 instead of the usual 8 bits.
The compression ratio is 5/8 = .625, not bad, but the loss may normally be too great.
(An interesting example of similar text is the last chapter of Ulysses by James Joyce. In
addition to letters, digits, and spaces, this long chapter contains only a few punctuation
marks.)

Exercise 1.2: A character set including the 26 uppercase letters and the space can be
coded with 5-bit codes, but that would leave five unused codes. Suggest a way to use
them.

1.1.3 Ad Hoc Text Compression

Here are some simple, intuitive ideas for cases where the compression must be reversible
(lossless).

m  If the text contains many spaces but they are not clustered, they may be removed
and their positions indicated by a bit-string that contains a 0 for each text character
that is not a space and a 1 for each space. Thus, the text

Here are some ideas,
is encoded as the bit-string “0000100010000100000” followed by the text
Herearesomeideas.

If the number of blank spaces is small, the bit-string will be sparse, and the methods
of Section 8.5 can be employed to compress it considerably.

m  Since ASCII codes are essentially 7 bits long, the text may be compressed by writing
7 bits per character instead of 8 on the output stream. This may be called packing. The
compression ratio is, of course, 7/8 = 0.875.

= The numbers 402 = 64,000 and 2'6 = 65,536 are not very different and satisfy the
relation 403 < 216, This can serve as the basis of an intuitive compression method for
a small set of symbols. If the data to be compressed is text with at most 40 different
characters (such as the 26 letters, 10 digits, a space, and three punctuation marks), then
this method produces a compression factor of 24/16 = 1.5. Here is how it works.

Given a set of 40 characters and a string of characters from the set, we group the
characters into triplets. Each character can take one of 40 values, so a trio of characters
can have one of 40 = 64,000 values. Such values can be expressed in 16 bits each,
because 402 is less than 2'6. Without compression, each of the 40 characters requires
one byte, so our intuitive method produces a compression factor of 3/2 = 1.5. (This
is one of those rare cases where the compression factor is constant and is known in
advance.)

m  If the text includes just uppercase letters, digits, and some punctuation marks, the
old 6-bit CDC display code (Table 1.3) may be used. This code was commonly used in
second-generation computers (and even a few third-generation ones). These computers
did not need more than 64 characters because they did not have any display monitors
and they sent their output to printers that could print only a limited set of characters.
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Bits Bit positions 210

543 | 0 1 2 3 4 5 6 7
0 ABCDE F G
1 HI J KL MNO
2 P QRS TUVW
3 XY Z 01 2 3 4
4 56 78 9 + - *
5 / () $ =sp, .
6 =1 ] # A
Tl <> < 2 0

Table 1.3: The CDC Display Code.

= Another old code worth mentioning is the Baudot code (Table 1.4). This was a
5-bit code developed by J. M. E. Baudot in about 1880 for telegraph communication.
It became popular and by 1950 was designated the International Telegraph Code No. 1.
It was used in many first- and second-generation computers. The code uses 5 bits per
character but encodes more than 32 characters. Each 5-bit code can be the code of two
characters, a letter and a figure. The “letter shift” and “figure shift” codes are used to
shift between letters and figures.

Using this technique, the Baudot code can represent 32 x 2 — 2 = 62 characters
(each code can have two meanings except the LS and FS codes). The actual number of
characters, however, is smaller than that, because five of the codes have one meaning
each, and some codes are not assigned.

The Baudot code is not reliable because no parity bit is used. A bad bit can
transform a character into another character. In particular, a bad bit in a shift character
causes a wrong interpretation of all the characters following, up to the next shift.

m  If the data includes just integers, each decimal digit may be represented in 4 bits,
with two digits packed in a byte. Data consisting of dates may be represented as the
number of days since January 1, 1900 (or some other convenient start date). Each
date may be stored as a 16-bit or 24-bit number (2 or 3 bytes). If the data consists of
date/time pairs, a possible compressed representation is the number of seconds since a
convenient start date. If stored as a 32-bit number (4 bytes) such a representation can
be sufficient for about 136 years.

= Dictionary data (or any list sorted lexicographically) can be compressed using the
concept of front compression. This is based on the observation that adjacent words
in such a list tend to share some of their initial characters. A word can therefore be
compressed by dropping the n characters it shares with its predecessor in the list and
replacing them with n.

Table 1.5 shows a short example taken from a word list used to create anagrams. It
is clear that it is easy to get significant compression with this simple method (see also
[Robinson and Singer 81] and [Nix 81]).

s The MacWrite word processor [Young 85] used a special 4-bit code to code the
most common 15 characters “ etnroaisdlhcfp” plus an escape code. Any of these
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Letters Code Figures | Letters Code Figures
A 10000 1 Q 10111 /
B 00110 8 R 00111 -
C 10110 9 S 00101 SP
D 11110 0 T 10101 na
E 01000 2 U 10100 4
F 01110 na \Y% 11101 !
G 01010 7 W 01101 ?
H 11010 + X 01001 ,
I 01100 na Y 00100 3
J 10010 6 Z 11001 :
K 10011 ( LS 00001 LS
L 11011 = FS 00010 FS
M 01011 ) CR 11000 CR
N 01111 na LF 10001 LF
(0] 11100 5 ER 00011 ER
P 11111 % na 00000 na

LS, Letter Shift; F'S, Figure Shift.
CR, Carriage Return; LF, Line Feed.
ER, Error; na, Not Assigned; SP, Space.

Table 1.4: The Baudot Code.

The 9/19/89 Syndrome

How can a date, such as 11/12/71, be represented inside a
computer? One way to do this is to store the number of
days since January 1, 1900 in an integer variable. If the
variable is 16 bits long (including 15 magnitude bits and
one sign bit), it will overflow after 25 = 32K = 32,768
days, which is September 19, 1989. This is precisely what
happened on that day in several computers (see the Jan-
uary, 1991 issue of the Communications of the ACM). No-
tice that doubling the size of such a variable to 32 bits
would have delayed the problem until after 23! = 2 giga
days have passed, which would occur sometime in the fall
of year 5,885,416.

15 characters is encoded by 4 bits. Any other character is encoded as the escape code
followed by the 8 bits of ASCII code of the character; a total of 12 bits. Each paragraph
is coded separately, and if this results in expansion, the paragraph is stored as plain
ASCII. One more bit is added to each paragraph to indicate whether or not it uses
compression.
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a a
aardvark lardvark
aback 1back
abaft 3ft
abandon 3ndon
abandoning 7ing
abasement 3sement
abandonment 3ndonment
abash 3sh

abated 3ted

abate 5

abbot 2bot

abbey ey
abbreviating  3reviating
abbreviate 9e

abbreviation  9ion

Table 1.5: Front Compression.

The principle of parsimony values a theory’s
ability to compress a maximum of information into
a minimum of formalism. Einstein’s celebrated E =
mc? derives part of its well-deserved fame from the
astonishing wealth of meaning it packs into its tiny
frame. Maxwell’s equations, the rules of quantum
mechanics, and even the basic equations of the gen-
eral theory of relativity similarly satisfy the parsi-
mony requirement of a fundamental theory: They
are compact enough to fit on a T-shirt. By way of
contrast, the human genome project, requiring the
quantification of hundreds of thousands of genetic
sequences, represents the very antithesis of parsi-
mony.

—Hans C. von Baeyer, Mazwell’s Demon, 1998

1.2 Run-Length Encoding

The idea behind this approach to data compression is this: If a data item d occurs n
consecutive times in the input stream, replace the n occurrences with the single pair
nd. The n consecutive occurrences of a data item are called a run length of n, and this
approach to data compression is called run-length encoding or RLE. We apply this idea

first to text compression and then to image compression.
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1.3 RLE Text Compression

Just replacing 2.,all is too well with 2. a2 ,is t2 we2 will not work. Clearly, the
decompressor should have a way to tell that the first 2 is part of the text while the others
are repetition factors for the letters o and 1. Even the string 2._,a21_is_t20_ we2l does
not solve this problem (and also does not provide any compression). One way to solve
this problem is to precede each repetition with a special escape character. If we use
the character @ as the escape character, then the string 2.,,a@21 ,is ;t020 ,we@21 can
be decompressed unambiguously. However, this string is longer than the original string,
because it replaces two consecutive letters with three characters. We have to adopt the
convention that only three or more repetitions of the same character will be replaced
with a repetition factor. Figure 1.6a is a flowchart for such a simple run-length text
COMPressor.

After reading the first character, the repeat-count is 1 and the character is saved.
Subsequent characters are compared with the one already saved, and if they are identical
to it, the repeat-count is incremented. When a different character is read, the operation
depends on the value of the repeat count. If it is small, the saved character is written on
the compressed file and the newly-read character is saved. Otherwise, an @ is written,
followed by the repeat-count and the saved character.

Decompression is also straightforward. It is shown in Figure 1.6b. When an @ is
read, the repetition count n and the actual character are immediately read, and the
character is written n times on the output stream.

The main problems with this method are the following:

1. In plain English text there are not many repetitions. There are many “doubles”
but a “triple” is rare. The most repetitive character is the space. Dashes or asterisks
may sometimes also repeat. In mathematical texts, digits may repeat. The following
“paragraph” is a contrived example.

The abbott from Abruzzi accedes to the demands of all abbesses from Narra-
gansett and Abbevilles from Abyssinia. He will accommodate them, abbreviate
his sabbatical, and be an accomplished accessory.

2. The character “@” may be part of the text in the input stream, in which case a
different escape character must be chosen. Sometimes the input stream may contain
every possible character in the alphabet. An example is an object file, the result of
compiling a program. Such a file contains machine instructions and can be considered
a string of bytes that may have any values. The MNP5 method described below and in
Section 2.10 provides a solution.
3. Since the repetition count is written on the output stream as a byte, it is limited to
counts of up to 255. This limitation can be softened somewhat when we realize that the
existence of a repetition count means that there is a repetition (at least three identical
consecutive characters). We may adopt the convention that a repeat count of 0 means
three repeat characters, which implies that a repeat count of 255 means a run of 258
identical characters.

The MNP class 5 method was used for data compression in old modems. It has been
developed by Microcom, Inc., a maker of modems (MNP stands for Microcom Network
Protocol), and it uses a combination of run-length and adaptive frequency encoding.
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Char. count C:=0
Repeat count R:=0 .

Read next
character, CH @

@@ Yes @

No

Yes ‘ '
Lg ‘ SC:=save CH ‘
- ©
Yes
No
Write SC
Yes on output
R@ file R times
No
R:=0
Write compressed SC:=Save CH
format (3 chars) | goto 1.

(a)

Figure 1.6: RLE. Part I: Compression.
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Compression flag:=off

Read next character

% e@ Write char on output

no
no
Compression yes —
flag off? a1 @r— @
o yes
Read n. Compression
Read n Chars. flag:=on
Generate n
repetitions

(b)

Figure 1.6 RLE. Part II: Decompression.
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There are three kinds of lies: lies, damned lies, and statistics.
(Attributed by Mark Twain to Benjamin Disraeli)

The latter technique is described in Section 2.10, but here is how MNP5 solves problem
2 above.

When three or more identical consecutive bytes are found in the input stream, the
compressor writes three copies of the byte on the output stream, followed by a repetition
count. When the decompressor reads three identical consecutive bytes, it knows that
the next byte is a repetition count (which may be 0, indicating just three repetitions). A
disadvantage of the method is that a run of three characters in the input stream results in
four characters written to the output stream: expansion! A run of four characters results
in no compression. Only runs longer than four characters get compressed. Another slight
problem is that the maximum count is artificially limited in MNP5 to 250 instead of
255.

To get an idea of the compression ratios produced by RLE, we assume a string
of N characters that needs to be compressed. We assume that the string contains
M repetitions of average length L each. Each of the M repetitions is replaced by 3
characters (escape, count, and data), so the size of the compressed string is N — M x
L+ M x3=N — M(L - 3) and the compression factor is

N
N-—M(L-3)

(For MNP5 just substitute 4 for 3.) Examples: N = 1000,M = 10,L = 3 yield a
compression factor of 1000/[1000 — 10(4 — 3)] = 1.01. A better result is obtained in the
case N = 1000, M = 50, L = 10, where the factor is 1000/[1000 — 50(10 — 3)] = 1.538.

A variant of run-length encoding for text is digram encoding. This method is suitable
for cases where the data to be compressed consists only of certain characters, e.g., just
letters, digits, and punctuation marks. The idea is to identify commonly-occurring pairs
of characters and to replace a pair (a digram) with one of the characters that cannot
occur in the data (e.g., one of the ASCII control characters). Good results can be
obtained if the data can be analyzed beforehand. We know that in plain English certain
pairs of characters, such as E,, ,T, TH, and A, occur often. Other types of data may
have different common digrams. The sequitur method of Section 8.10 is an example of a
method that compresses data by locating repeating digrams (as well as longer repeated
phrases) and replacing them with special symbols.

A similar variant is pattern substitution. This is suitable for compressing computer
programs, where certain words, such as for, repeat, and print, occur often. Each
such word is replaced with a control character or, if there are many such words, with an
escape character followed by a code character. Assuming that code a is assigned to the
word print, the text m:_ print,b,a; will be compressed to m: ,0a,b,a;.

1.3.1 Relative Encoding

This is another variant, sometimes called differencing (see [Gottlieb et al. 75]). It is used
in cases where the data to be compressed consists of a string of numbers that do not
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differ by much, or in cases where it consists of strings that are similar to each other. An
example of the former is telemetry. The latter case is used in facsimile data compression
described in Section 2.13 and also in LZW compression (Section 3.12.4).

In telemetry, a sensing device is used to collect data at certain intervals and trans-
mit it to a central location for further processing. An example is temperature values
collected every hour. Successive temperatures normally do not differ by much, so the
sensor needs to send only the first temperature, followed by differences. Thus the se-
quence of temperatures 70, 71,72.5,73.1, ... can be compressed to 70,1,1.5,0.6,.... This
compresses the data, because the differences are small and can be expressed in fewer
bits.

Notice that the differences can be negative and may sometimes be large. When a
large difference is found, the compressor sends the actual value of the next measurement
instead of the difference. Thus, the sequence 110, 115,121,119, 200, 202, ... can be com-
pressed to 110, 5,6, —2,200, 2, .... Unfortunately, we now need to distinguish between a
difference and an actual value. This can be done by the compressor creating an extra bit
(a flag) for each number sent, accumulating those bits, and sending them to the decom-
pressor from time to time, as part of the transmission. Assuming that each difference is
sent as a byte, the compressor should follow (or precede) a group of 8 bytes with a byte
consisting of their 8 flags.

Another practical way to send differences mixed with actual values is to send pairs
of bytes. Each pair is either an actual 16-bit measurement (positive or negative) or two
8-bit signed differences. Thus, actual measurements can be between 0 and £32K and
differences can be between 0 and 4+255. For each pair, the compressor creates a flag: 0
if the pair is an actual value, 1 if it is a pair of differences. After 16 pairs are sent, the
compressor sends the 16 flags.

Example: The sequence of measurements 110,115,121,119,200, 202, ... is sent as
(110), (5,6), (—2,—1), (200), (2,...), where each pair of parentheses indicates a pair of
bytes. The —1 has value 111111115, which is ignored by the decompressor (it indicates
that there is only one difference in this pair). While sending this information, the
compressor prepares the flags 01101..., which are sent after the first 16 pairs.

Relative encoding can be generalized to the lossy case, where it is called differen-
tial encoding. An example of a differential encoding method is differential pulse code
modulation (or DPCM, Section 4.26).

1.4 RLE Image Compression

RLE is a natural candidate for compressing graphical data. A digital image consists of
small dots called pixels. Each pixel can be either one bit, indicating a black or a white
dot, or several bits, indicating one of several colors or shades of gray. We assume that
the pixels are stored in an array called a bitmap in memory, so the bitmap is the input
stream for the image. Pixels are normally arranged in the bitmap in scan lines, so the
first bitmap pixel is the dot at the top left corner of the image, and the last pixel is the
one at the bottom right corner.

Compressing an image using RLE is based on the observation that if we select a
pixel in the image at random, there is a good chance that its neighbors will have the
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same color (see also Sections 4.30 and 4.32). The compressor therefore scans the bitmap
row by row, looking for runs of pixels of the same color. If the bitmap starts, e.g., with
17 white pixels, followed by 1 black pixel, followed by 55 white ones, etc., then only the
numbers 17, 1, 55,...need be written on the output stream.

The compressor assumes that the bitmap starts with white pixels. If this is not
true, then the bitmap starts with zero white pixels, and the output stream should start
with the run length 0. The resolution of the bitmap should also be saved at the start of
the output stream.

The size of the compressed stream depends on the complexity of the image. The
more detail, the worse the compression. However, Figure 1.7 shows how scan lines go
through a uniform region. A line enters through one point on the perimeter of the region
and exits through another point, and these two points are not “used” by any other scan
lines. It is now clear that the number of scan lines traversing a uniform region is roughly
equal to half the length (measured in pixels) of its perimeter. Since the region is uniform,
each scan line contributes two runs to the output stream for each region it crosses. The
compression ratio of a uniform region therefore roughly equals the ratio

2x half the length of the perimeter  perimeter

total number of pixels in the region area

S =

L, —
N

L
J/
\\\/

;|

\ )

Figure 1.7: Uniform Areas and Scan Lines.

o Exercise 1.3: What would be the compressed file in the case of the following 6 x 8
bitmap?

RLE can also be used to compress grayscale images. Each run of pixels of the
same intensity (gray level) is encoded as a pair (run length, pixel value). The run length
usually occupies one byte, allowing for runs of up to 255 pixels. The pixel value occupies
several bits, depending on the number of gray levels (typically between 4 and 8 bits).
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Example: An 8-bit deep grayscale bitmap that starts with
12,12,12,12,12,12,12,12,12,35,76,112,67,87,87,87,5,5,5,5,5,5,1, ...

is compressed into [9],12,35,76,112,67,[3],87, [6],5,1,. . ., where the boxed numbers indicate
counts. The problem is to distinguish between a byte containing a grayscale value (such
as 12) and one containing a count (such as [9]). Here are some solutions (although not
the only possible ones):

1. If the image is limited to just 128 grayscales, we can devote one bit in each byte to
indicate whether the byte contains a grayscale value or a count.

2. If the number of grayscales is 256, it can be reduced to 255 with one value reserved
as a flag to precede every byte with a count. If the flag is, say, 255, then the sequence
above becomes

255,9,12, 35,76, 112, 67, 255, 3,87, 255, 6,5, 1, . . ..

3. Again, one bit is devoted to each byte to indicate whether the byte contains a grayscale
value or a count. This time, however, these extra bits are accumulated in groups of 8,
and each group is written on the output stream preceding (or following) the 8 bytes it
“corresponds to.”

Example: the sequence [9],12,35,76,112,67,3],87,[6],5,1,. .. becomes

The total size of the extra bytes is, of course, 1/8 the size of the output stream (they
contain one bit for each byte of the output stream), so they increase the size of that
stream by 12.5%.

4. A group of m pixels that are all different is preceded by a byte with the negative
value —m. The sequence above is encoded by

9,12,—4,35,76,112,67,3,87,6,5,7,1,... (the value of the byte with ? is positive or
negative depending on what follows the pixel of 1). The worst case is a sequence of pixels
(p1, p2, p2) repeated n times throughout the bitmap. It is encoded as (-1, p1, 2, p2), four
numbers instead of the original three! If each pixel requires one byte, then the original
three bytes are expanded into four bytes. If each pixel requires three bytes, then the
original three pixels (comprising 9 bytes) are compressed into 1 + 3 4+ 1 + 3 = 8 bytes.

Three more points should be mentioned:

1. Since the run length cannot be 0, it makes sense to write the [run length minus one]
on the output stream. Thus the pair (3,87) denotes a run of four pixels with intensity
87. This way, a run can be up to 256 pixels long.

2. In color images it is common to have each pixel stored as three bytes, represent-
ing the intensities of the red, green, and blue components of the pixel. In such a
case, runs of each color should be encoded separately. Thus the pixels (171,85, 34),
(172,85,35), (172, 85,30), and (173,85, 33) should be separated into the three sequences
(171,172,172,173,...), (85,85, 85,85, ...), and (34,35, 30,33, ...). Each sequence should
be run-length encoded separately. This means that any method for compressing grayscale
images can be applied to color images as well.
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3. It is preferable to encode each row of the bitmap individually. Thus if a row ends with
four pixels of intensity 87 and the following row starts with 9 such pixels, it is better
to write ...,4,87,9,87,... on the output stream rather than ...,13,87,.... It is even
better to write the sequence ...,4,87,e0l,9,87,..., where “eol” is a special end-of-line
code. The reason is that sometimes the user may decide to accept or reject an image just
by examining its general shape, without any details. If each line is encoded individually,
the decoding algorithm can start by decoding and displaying lines 1,6, 11, ..., continue
with lines 2,7,12,..., etc. The individual rows of the image are interlaced, and the
image is built on the screen gradually, in several steps. This way, it is possible to get an
idea of what is in the image at an early stage. Figure 1.8c shows an example of such a
scan.
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Figure 1.8: RLE Scanning.

Another advantage of individual encoding of rows is to make it possible to extract
just part of an encoded image (such as rows k through [). Yet another application is to
merge two compressed images without having to decompress them first.

If this idea (encoding each bitmap row individually) is adopted, then the compressed
stream must contain information on where each bitmap row starts in the stream. This
can be done by writing a header at the start of the stream that contains a group of 4
bytes (32 bits) for each bitmap row. The kth such group contains the offset (in bytes)
from the start of the stream to the start of the information for row k. This increases the
size of the compressed stream but may still offer a good trade-off between space (size of
compressed stream) and time (time to decide whether to accept or reject the image).

Exercise 1.4: There is another, obvious, reason why each bitmap row should be coded
individually. What is it?

Figure 1.9a lists Matlab code to compute run lengths for a bi-level image. The code
is very simple. It starts by flattening the matrix into a one-dimensional vector, so the
run lengths continue from row to row.
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% Returns the run lengths of

% a matrix of Os and 1s

function R=runlengths(M)

[c,r]l=size(M);

for i=1:c;

x(r*(i-1)+1:r*i)=M(@,:);

end

N=r*c;

y=x(2:N);

u=x(1:N-1);

z=y+u;

j=find(z==1);

i1=[j NJ;

i2=[0 jI;

Red1-32; (W W]

W W

the test N

M=[0 0 01; 1110; 111 0] N

runlengths (M) 5555555%
d HEEEEEN |

broduces EEEEEEEN

3 4 1 3 1

(a) (b)

Figure 1.9: (a) Matlab Code To Compute Run Lengths. (b) A Bitmap.

Disadvantage of image RLE: When the image is modified, the run lengths normally
have to be completely redone. The RLE output can sometimes be bigger than pixel-
by-pixel storage (i.e., an uncompressed image, a raw dump of the bitmap) for complex
pictures. Imagine a picture with many vertical lines. When it is scanned horizontally,
it produces very short runs, resulting in very bad compression, or even in expansion.
A good, practical RLE image compressor should be able to scan the bitmap by rows,
columns, or in zigzag (Figure 1.8a,b) and it may automatically try all three ways on
every bitmap compressed to achieve the best compression.

Exercise 1.5: Given the 8 x 8 bitmap of Figure 1.9b, use RLE to compress it, first row
by row, then column by column. Describe the results in detail.

1.4.1 Lossy Image Compression

It is possible to get even better compression ratios if short runs are ignored. Such a
method loses information when compressing an image, but sometimes this is acceptable
to the user. (Images that allow no loss no loss are medical X-rays and pictures taken by
large telescopes, where the price of an image is astronomical.)

A lossy run-length encoding algorithm should start by asking the user for the longest
run that should still be ignored. If the user specifies, for example, 3, then the program
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merges all runs of 1, 2, or 3 identical pixels with their neighbors. The compressed data
“6,8,1,2,4,3,11,2” would be saved, in this case, as “6,8,7,16” where 7 is the sum 1+2+4
(three runs merged) and 16 is the sum 3 + 11 + 2. This makes sense for large high-
resolution images where the loss of some detail may be invisible to the eye, but may
significantly reduce the size of the output stream (see also Chapter 4).

1.4.2 Conditional Image RLE

Facsimile compression (Section 2.13) uses a modified Huffman code, but it can also
be considered a modified RLE. This section discusses another modification of RLE,
proposed in [Gharavi 87]. Assuming an image with n grayscales, the method starts
by assigning an n-bit code to each pixel depending on its near neighbors. It then
concatenates the n-bit codes into a long string and calculates run lengths. The run
lengths are assigned prefix codes (Huffman or other, Section 2.3) that are written on the
compressed stream.

The method considers each scan line in the image a second-order Markov model. In
such a model the value of the current data item depends on just two of its past neighbors,
not necessarily the two immediate ones. Figure 1.10 shows the two neighbors A and B
used by our method to predict the current pixel X (compare this with the lossless mode
of JPEG, Section 4.8.5). A set of training images is used to count—for each possible
pair of values of the neighbors A, B—how many times each value of X occurs. If A and
B have similar values, it is natural to expect that X will have a similar value. If A and
B have very different values, we expect X to have many different values, each with a low
probability. The counts therefore produce the conditional probabilities P(X|A, B) (the
probability of the current pixel having value X if we already know that its neighbors
have values A and B). Table 1.11 lists a small part of the results obtained by counting
this way several training images with 4-bit pixels.

Each pixel in the image to be compressed is assigned a new 4-bit code depending
on its conditional probability as indicated by the table. Imagine a current pixel X
with value 1 whose neighbors have values A = 3, B = 1. The table indicates that the
conditional probability P(1|3,1) is high, so X should be assigned a new 4-bit code with
few runs (i.e., codes that contain consecutive 1’s or consecutive 0’s). On the other hand,
the same X = 1 with neighbors A = 3 and B = 3 can be assigned a new 4-bit code with
many runs, since the table indicates that the conditional probability P(1]3,3) is low.
The method therefore uses conditional probabilities to detect common pixels (hence the
name conditional RLE), and assigns them codes with few runs.

Examining all 16 four-bit codes W; through Wig, we find that the two codes 0000
and 1111 have one run each, while 0101 and 1010 have four runs each. The codes should
be arranged in order of increasing runs. For 4-bit codes we end up with the four groups

1. Wi to Wa:0000,1111,
2. Ws to Wy : 0001,0011,0111, 1110, 1100, 1000,
3. Wo to Wis : 0100, 0010, 0110, 1011, 1101, 1001,
4. Wis to Wig : 0101, 1010.

The codes of group 7 have ¢ runs each. The codes in each group are selected such that
the codes in the second half of a group are the complements of those in the first half.
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Figure 1.10: Neighbors Used To Predict X.

A B W1 W2 W3 W4 W5 W6 Wr7...

9 15 value: 4 3 10 0 6 8 1...
count: 21 6 5 4 2 2 1...

3 0 value: 0 1 3 2 11 4 15 ...
count: 443 114 75 64 56 19 12 ...

3 1 value: 1 2 3 4 0 5 6...
count: 1139 817 522 75 55 20 8

3 9 value: 2 3 1 4 5 6 0...
count: 7902 4636 426 264 64 18 6...

3 3 value: 3 2 4 5 1 6 7
count: 33927 2869 2511 138 93 51 18

3 4 value: 4 3 5 2 6 7 1...
count: 2859 2442 240 231 53 31 13 ...

Table 1.11: Conditional Counting of 4-Bit Pixels.

o Exercise 1.6: Apply this principle to construct the 32 five-bit codes.

The method can now be described in detail. The image is scanned in raster order.
For each pixel X, its neighbors A and B are located, and the table is searched for this
triplet. If the triplet is found in column ¢, then code W; is selected. The first pixel has
no neighbors, so if its value is i, code W; is selected for it. If X is located at the top
row of the image, it has an A neighbor but not a B neighbor, so this case is handled
differently. Imagine a pixel X = 2 at the top row with a neighbor A = 3. All the rows
in the table with A = 3 are examined, in this case, and the one with the largest count
for X = 2 is selected. In our example this is the row with count 7902, so code Wy is
selected. Pixels X with no A neighbors (on the left column) are treated similarly.

Rule of complementing: After the code for X has been selected, it is compared with
the preceding code. If the least-significant bit of the preceding code is 1, the current
code is complemented. This is supposed to reduce the number of runs. As an example,
consider the typical sequence of 4-bit codes Wy, Wy, W1, Wg, W3, Wo, Wy

1111, 0011, 0000, 1110, 0001, 1111, 0000.

When these codes are concatenated, the resulting 28-bit string has eight runs. After
applying the rule above, the codes become

1111, 1100, 0000, 1110, 0001, 0000, 0000,
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a string with just six runs.

o Exercise 1.7: Do the same for the code sequence Wy, Wy, W3, Wy, W1, Wy, Ws.

A B w1 W2 W3 W4 W5 W6 W7 ...
2 15 value: 4 3 10 0 6 8 1...
code: 01 00 111 110 1011 1010 10010 ...
3 0 value: 0 1 3 2 11 4 15 ...
code: 11 10 00 010 0110 011111 011101 ...
3 1 value: 1 2 3 4 0 5 6...
code: 0 11 100 1011 10100 101010 10101111 ...
3 9 value: 2 3 1 4 5 6 0...
code: 0 11 100 1011 10100 101010 10101111 ...
3 3 value: 3 2 4 5 1 6 7...
code: 0 11 100 1011 101001 1010000 10101000 ...
3 4 value: 4 3 5 2 6 7 1...
code: 11 10 00 0111 0110 0100 010110 ...

Table 1.12: Prefix Codes For 4-Bit Pixels.

A variation of this method uses the counts of Table 1.11 but not its codes and
run lengths. Instead, it assigns a prefix code to the current pixel X depending on its
neighbors A and B. Table 1.12 is an example. Each row has a different set of prefix
codes constructed according to the counts of the row.

1.4.3 The BinHex 4.0 Format

BinHex 4.0 is a file format for reliable file transfers, designed by Yves Lempereur for
use on the Macintosh computer. Before delving into the details of the format, the
reader should understand why such a format is useful. ASCII is a 7-bit code. Each
character is coded as a 7-bit number, which allows for 128 characters in the ASCII table.
The ASCII standard recommends adding an eighth bit as parity to every character for
increased reliability. However, the standard does not specify odd or even parity, and
many computers simply ignore the extra bit or even set it to 0. As a result, when files
are transferred in a computer network, some transfer programs may ignore the eighth
bit and transfer just seven bits per character. This isn’t so bad when a text file is being
transferred but when the file is binary, no bits should be ignored. This is why it is safer
to transfer text files, rather than binary files, over computer networks.

The idea of BinHex is to translate any file to a text file. The BinHex program reads
an input file (text or binary) and produces an output file with the following format:

1. The comment:
(This_file must be converted with, BinHex 4.0)

2. A header including the items listed in Table 1.13.
3. The input file is then read and RLE is used as the first step. Character 90,4 is used
as the RLE marker, and the following examples speak for themselves:
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Source string Packed string

00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77
11 22 22 22 22 22 22 33 11 22 90 06 33
11 22 90 33 44 11 22 90 00 33 44

(The character 00 indicates no run.) Runs of lengths 3-255 characters are encoded this
way.

Field Size

Length of FileName (1-63) byte

FileName (“Length” bytes)
Version byte

Type long

Creator long

Flags (And $F800) word

Length of Data Fork long

Length of Resource Fork long

CRC word

Data Fork (“Data Length” bytes)
CRC word

Resource Fork (“Rsrc Length” bytes)
CRC word

Table 1.13: The BinHex Header.

o Exercise 1.8: How is the string “11 22 90 00 33 44” encoded?

4. Encoding into 7-bit ASCII characters. The input file is considered a stream of bits.
As the file is being read, it is divided into blocks of 6 bits, and each block is used as
a pointer to the BinHex table below. The character that’s pointed to in this table is
written on the output file. The table is

" #$%8&° () *+,-012345689@ABCDEFGHI JKLMNPQRSTUVXYZ [ ‘ abcdefhi jklmpqr

The output file is organized in “lines” of 64 characters each (except, perhaps, the
last line). Each line is preceded and followed by a pair of colons “:”. The following is a
quotation from the designer:

“The characters in this table have been chosen for maximum noise protection.”

o Exercise 1.9: Manually convert the string “123ABC” to BinHex. Ignore the comment
and the file header.

1.4.4 BMP Image Files

BMP is the native format for image files in the Microsoft Windows operating system.
It has been modified several times since its inception, but has remained stable from
version 3 of Windows. BMP is a palette-based graphics file format for images with 1,



36 1. Basic Techniques

2,4, 8, 16, 24, or 32 bitplanes. It uses a simple form of RLE to compress images with
4 or 8 bitplanes. The format of a BMP file is simple. It starts with a file header that
contains the two bytes BM and the file size. This is followed by an image header with the
width, height, and number of bitplanes (there are two different formats for this header).
Following the two headers is the color palette (that can be in one of three formats)
which is followed by the image pixels, either in raw format or compressed by RLE.
Detailed information on the BMP file format can be found in, for example, [Miano 99]
and [Swan 93]. This section discusses the particular version of RLE used by BMP to
compress pixels.

For images with eight bitplanes, the compressed pixels are organized in pairs of
bytes. The first byte of a pair is a count C, and the second byte is a pixel value P which
is repeated C times. Thus, the pair 04;4 0214 is expanded to the four pixels 0214 0214
0216 0216. A count of 0 acts as an escape, and its meaning depends on the byte that
follows. A zero byte followed by another zero indicates end-of-line. The remainder of
the current image row is filled with pixels of 00 as needed. A zero byte followed by 0114
indicates the end of the image. The remainder of the image is filled up with 00 pixels.
A zero byte followed by 0214 indicates a skip to another position in the image. A 004
0214 pair must be followed by 2 bytes indicating how many columns and rows to skip
to reach the next nonzero pixel. Any pixels skipped are filled with zeros. A zero byte
followed by a byte C' greater than 2 indicates C raw pixels. Such a pair must be followed
by the C' pixels. Assuming a 4 x8 image with 8-bit pixels, the following sequence

0416 02167 0016 0416 a35b124716, 0116 f5167 0216 6716, 0016 0216 000116;
0116 9916, 0316 clis, 0016 0016, 0016 0416 08926bd 716, 0016 0116

is the compressed representation of the 32 pixels

02 02 02 02 a3 5b 12 47
£5 e7 e7 00 00 00 00 00
00 00 99 c1 c1 c1 00 00
08 92 6b d7 00 00 00 00

Images with four bitplanes are compressed in a similar way but with two exceptions.
The first exception is that a pair (C, P) represents a count byte and a byte of two pixel
values that alternate. The pair 0514 a21¢, for example, is the compressed representation
of the five 4-bit pixels a, 2, a, 2, and a, while the pair 0716 ffis represents seven
consecutive 4-bit pixels of fig. The second exception has to do with pairs (0,C) where
C is greater than 2. Such a pair is followed by C 4-bit pixel values, packed two to a byte.
The value of C' is normally a multiple of 4, implying that a pair (0, C) specifies pixels to
fill up an integer number of words (where a word is 2 bytes). If C is not a multiple of 4,
the remainder of the last word is padded with zeros. Thus, 00150816 35012474 specifies
8 pixels and fills up 4 bytes (or two words) with a35b12474, whereas 0016 0616 a35b121¢
specifies six pixels and also fills up 4 bytes but with a35b612004¢.
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1.5 Move-to-Front Coding

The basic idea of this method [Bentley 86] is to maintain the alphabet A of symbols
as a list where frequently occurring symbols are located near the front. A symbol s is
encoded as the number of symbols that precede it in this list. Thus if A=(t, h, e, s,...)
and the next symbol in the input stream to be encoded is e, it will be encoded as 2,
since it is preceded by two symbols. There are several possible variants to this method;
the most basic of them adds one more step: After symbol s is encoded, it is moved
to the front of list A. Thus, after encoding e, the alphabet is modified to A=(e, t, h,
S,...). This move-to-front step reflects the expectation that once e has been read from
the input stream, it will be read many more times and will, at least for a while, be a
common symbol. The move-to-front method is locally adaptive, since it adapts itself to
the frequencies of symbols in local areas of the input stream.

The method produces good results if the input stream satisfies this expectation,
i.e., if it contains concentrations of identical symbols (if the local frequency of symbols
changes significantly from area to area in the input stream). We call this the concen-
tration property. Here are two examples that illustrate the move-to-front idea. Both
assume the alphabet A=(a, b, ¢, d, m, n, o, p).
1. The input stream abcddcbamnopponm is encoded as
C=(0,1,2,3,0,1,2,3,4,5,6,7,0,1,2,3) (Table 1.14a). Without the move-to-front step
it is encoded as C' = (0,1,2,3,3,2,1,0,4,5,6,7,7,6,5,4) (Table 1.14b). Both C and C”
contain codes in the same range [0, 7], but the elements of C' are smaller on the average,
since the input starts with a concentration of abcd and continues with a concentration
of mnop. (The average value of C' is 2.5, while that of C’ is 3.5.)

a abcdmnop 0 a abcdmnop 0 a abcdmnop 0 a abcdmnop 0
b abcdmnop 1 b abcdmnop 1 b abcdmnop 1 b abcdmnop 1
¢ bacdmnop 2 ¢ abcdmnop 2 ¢ bacdmnop 2 ¢ abcdmnop 2
d cbadmnop 3 d abcdmnop 3 d cbadmnop 3 d abcdmnop 3
d dcbamnop 0 d abcdmnop 3 m dcbamnop 4 m abcdmnop 4
¢ dcbamnop 1 ¢ abcdmnop 2 n mdcbanop 5 n abcdmnop 5
b cdbamnop 2 b abcdmnop 1 o nmdcbaop 6 o abcdmnop 6
a bcdamnop 3 a abcdmnop 0 p onmdcbap 7 p abcdmnop 7
m abcdmnop 4 m abcdmnop 4 a ponmdcba 7 a abcdmnop 0
n mabcdnop 5 n abcdmnop 5 b aponmdcb 7 b abcdmnop 1
o nmabcdop 6 o abcdmnop 6 ¢ baponmdc 7 ¢ abcdmnop 2
p onmabcedp 7 p abcdmnop 7 d cbaponmd 7 d abcdmnop 3
p ponmabcd 0 p abcdmnop 7 m dcbaponm 7 m abcdmnop 4
o ponmabced 1 o abcdmnop 6 n mdcbapon 7 n abcdmnop 5
n opnmabed 2 n abcdmnop 5 o nmdcbapo 7 o abcdmnop 6
m nopmabced 3 m abcdmnop 4 p onmdcbap 7 p abcdmnop 7
mnopabcd ponmdcba
(a) (b) (c) (d)

Table 1.14: Encoding With and Without Move-to-Front.
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2. The input stream abcdmnopabcdmnop is encoded as
C=1(0,1,2,3,4,5,6,7,7,7,7,7,7,7,7,7) (Table 1.14c). Without the move-to-front step
it is encoded as C' = (0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7) (Table 1.14d). The average
of C is now 5.25, greater than that of C’, which is 3.5. The move-to-front rule creates
a worse result in this case, since the input does not contain concentrations of identical
symbols (it does not satisfy the concentration property).

Before getting into further details, it is important to understand the advantage of
having small numbers in C'. This feature makes it possible to efficiently encode C' with
either Huffman or arithmetic coding (Chapter 2). Here are four ways to do this:

1. Assign Huffman codes to the integers in the range [0, n] such that the smaller integers

get the shorter codes. Here is an example of such a code for the integers 0 through 7:
0—o, 1—10, 2—110, 3—1110, 4—11110, 5—111110, 6—1111110, 7—1111111.

2. Assign codes to the integers such that the code of integer ¢ > 1 is its binary code

preceded by |log, | zeros. Table 1.15 lists some examples.

Code Size
1

010

011
00100
00101
00110
00111
0001000
0001001

—_

O 00O U WN e,
~N ~J Ot Ot Ot ot W W

-~ -

15 0001111
16 000010000

Nej

Table 1.15: Examples of Variable-Size Codes.

o Exercise 1.10: What is the total size of the code of 7 in this case.

3. Use adaptive Huffman coding (Section 2.9).

4. For maximum compression, perform two passes over C, the first pass counts frequen-
cies of codes and the second one performs the actual encoding. The frequencies counted
in pass 1 are used to compute probabilities and assign Huffman codes to be used later
by pass 2.

It can be shown that the move-to-front method performs, in the worst case, slightly
worse than Huffman coding. At best, it performs significantly better.

As has been mentioned earlier, it is easy to come up with variations of the basic
idea of move-to-front. Here are some of them.

1. Move-ahead-k. The element of A matched by the current symbol is moved ahead k
positions instead of all the way to the front of A. The parameter k can be specified by
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the user, with a default value of either n or 1. This tends to reduce performance (i.e., to
increase the average size of the elements of C') for inputs that satisfy the concentration
property, but it works better for other inputs. Notice that assigning k = n is identical
to move-to-front. The case k = 1 is especially simple, since it only requires swapping an
element of A with the one preceding it.

Exercise 1.11: Use move-ahead-k to encode each of the strings abcddcbamnopponm and
abcdmnopabcdmnop twice, with £k =1 and k = 2.

2. Wait-c-and-move. An element of A is moved to the front only after it has been
matched ¢ times to symbols from the input stream (not necessarily ¢ consecutive times).
Each element of A should have a counter associated with it, to count the number of
matches. This method makes sense in implementations where moving and rearranging
elements of A is slow.

3. Normally, a symbol read from the input is a byte. If the input stream consists of
text, however, it may make sense to treat each word, not each character, as a symbol.
Consider the simple case where the input consists of just lowercase letters, spaces, and
one end-of-text marker at the end. We can define a word as a string of letters followed
by a space or by the end-of-text marker. The number of words in this case can be huge,
so the alphabet list A should start empty, and words should be added as they are being
input and encoded. We use the text

the boy,on my right, is the right boy

as an example.

The first word input is the. It is not found in A, since A is empty, so it is added
to A. The encoder emits 0 (the number of words preceding the in A) followed by the.
The decoder also starts with an empty A. The 0 tells it to select the first word in A, but
since A is empty, the decoder knows to expect the 0 to be followed by a word. It adds
this word to A.

The next word is boy. It is added to A, so A=(the, boy) and the encoder emits
1boy. The word boy is moved to the front of A, so A=(boy, the). The decoder reads the
1, which refers to the second word of A, but the decoder’s A has only one word in it so
far. The decoder thus knows that a new word must follow the 1. It reads this word and
adds it to the front of A. Table 1.16 summarizes the encoding steps for this example.

List A may grow very large in this variant, but any practical implementation has
to limit its size. This is why the last item of A (the least recently used item) has to be
deleted when A exceeds its size limit. This is another difference between this variant
and the basic move-to-front method.

Exercise 1.12: Decode the boy on my right,is the_ right boy and summarize the
steps in a table.

> =
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Word A (before adding) A (after adding) Code emitted
the O (the) Othe
boy (the) (the, boy) 1boy
on (boy, the) (boy, the, on) 2on
my (on, boy, the) (on, boy, the, my) 3my
right (my, on, boy, the) (my, on, boy, the, right) 4right
is (right, my, on, boy, the) (right, my, on, boy, the, is) bis
the (is, right, my, on, boy, the)  (is, right, my, on, boy, the) 5
right  (the, is, right, my, on, boy) (the, is, right, my, on, boy) 2
boy (right, the, is, my, on, boy) (right, the, is, my, on, boy) 5
(boy, right, the, is, my, on)

Table 1.16: Encoding Multiple-Letter Words.

“I’ll take my money now, Sadi,” Issus said.

“As soon as we’re sure this is the right boy,” Sadi replied.

“Ask it what its name is,” a hissing whisper said from the darkness behind Garion.
“I will, Maas.” Sadi looked faintly annoyed at the suggestion. “I’ve done this before.”
“You're taking too long,” the whisper said.

“Say your name, boy,” Sadi told Garion.

“Doroon,” Garion lied quickly. “I’'m really very thirsty.”

—David Eddings, The Belgariad, Queen of Sorcery

1.6 Scalar Quantization

The dictionary definition of the term “quantization” is “to restrict a variable quan-
tity to discrete values rather than to a continuous set of values.” In the field of data
compression, quantization is used in two ways:

1. If the data to be compressed is in the form of large numbers, quantization is used
to convert it to small numbers. Small numbers take less space than large ones, so
quantization generates compression. On the other hand, small numbers generally contain
less information than large ones, so quantization results in lossy compression.

2. If the data to be compressed is analog (i.e., a voltage that changes with time)
quantization is used to digitize it into small numbers. The smaller the numbers the
better the compression, but also the greater the loss of information. This aspect of
quantization is used by several speech compression methods.

I would not have the courage to raise this possibility if Academician Arkhangelsky
had not come tentatively to the same conclusion. He and I have disagreed about
the quantization of quasar red shifts, the explanation of superluminal light sources,
the rest mass of the neutrino, quark physics in neutron stars.... We have had many
disagreements.

—Carl Sagan, Contact (1986)
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In the discussion here we assume that the data to be compressed is in the form of
numbers, and that it is input, number by number, from an input stream (or a source).
Section 4.14 discusses a generalization of discrete quantization to cases where the data
consists of sets (called vectors) of numbers rather than of individual numbers.

The first example is naive discrete quantization of an input stream of 8-bit numbers.
We can simply delete the least-significant four bits of each data item. This is one of
those rare cases where the compression factor (=2) is known in advance and does not
depend on the data. The input data consists of 256 different symbols, while the output
data consists of just 16 different symbols. This method is simple but not very practical
because too much information is lost in order to get the unimpressive compression factor
of 2.

In order to develop a better approach we assume again that the data consists of
8-bit numbers, and that they are unsigned. Thus, input symbols are in the range [0, 255]
(if the input data is signed, input symbols have values in the range [—128,4127]). We
select a spacing parameter s and compute the sequence of uniform quantized values 0,
8, 28,...,ks, such that (k + 1)s > 255 and ks < 255. Each input symbol S is quantized
by converting it to the nearest value in this sequence. Selecting s = 3, e.g., produces the
uniform sequence 0,3,6,9,12,...,252,255. Selecting s = 4 produces 0,4,8,12,...,252,255
(since the next multiple of 4, after 252, is 256).

A similar approach is to select quantized values such that any number in the range
[0,255] will be no more than d units distant from one of the data values that are being
quantized. This is done by dividing the range into segments of size 2d + 1 and centering
them on the range [0, 255]. If, e.g., d = 16, then the range [0, 255] is divided into seven
segments of size 33 each, with 25 numbers remaining. We can thus start the first segment
12 numbers from the start of the range, which produces the 10-number sequence 12, 33,
45, 78, 111, 144, 177, 210, 243, and 255. Any number in the range [0,255] is at most
16 units distant from any of these numbers. If we want to limit the quantized sequence
to just eight numbers (so each can be expressed in 3 bits) we can apply this method to
compute the sequence 8, 41, 74, 107, 140, 173, 206, and 239.

The quantized sequences above make sense in cases where each symbol appears in
the input data with equal probability (cases where the source is memoryless). If the
input data is not uniformly distributed, the sequence of quantized values should be
distributed in the same way as the data.

Imagine, e.g., an input stream of 8-bit unsigned data items where most are zero
or close to zero and few are large. A good sequence of quantized values for such data
should have the same distribution, i.e., many small values and few large ones. One way
of computing such a sequence is to select a value for the length parameter [ and to
construct a “window” of the form

1b...0b
——
l

2

where each b is a bit, and place it under each of the 8 bit positions of a data item. If
the window sticks out on the right, some of the [ bits are truncated. As the window is
moved to the left, zero bits are appended to it. Table 1.17 illustrates this construction
with [ = 2. Tt is easy to see how the resulting quantized values start with initial spacing
of one unit, continue with spacing of two units and four units, until the last four values
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bbbbbbbb bbbbbbbb
1 1
10 2
1 3 .
100 4 100/000 32
101 5 101]000 40
110 6 110/000 48
11 7 111000 56
1000 8 100/0000 64
101]0 10 101/0000 80
110/0 12 110/0000 96
11110 14 111j0000 112

100/00 16 100/00000 128
101j00 20 10100000 160
110/00 24 110/00000 192
111j00 28 111]00000 224

Table 1.17: A Logarithmic Quantization Table.

are spaced by 32 units. The numbers 0 and 255 should be manually added to such a
quasi-logarithmic sequence to make it more general.

Scalar quantization is an example of a lossy compression method, where it is easy
to control the trade-off between compression ratio and the amount of loss. However,
because it is so simple, its use is limited to cases where much loss can be tolerated. Many
image compression methods are lossy, but scalar quantization is not suitable for image
compression because it creates annoying artifacts in the decompressed image. Imagine
an image with an almost uniform area where all pixels have values 127 or 128. If 127
is quantized to 111 and 128 is quantized to 144, then the result, after decompression,
may resemble a checkerboard where adjacent pixels alternate between 111 and 144. This
is why practical algorithms use vector quantization, instead of scalar quantization, for
lossy (and sometimes lossless) compression of images and sound. See also Section 4.1.

1.7 Recursive Range Reduction

In their original 1977 paper [Ziv and Lempel 77], Lempel and Ziv have proved that their
dictionary method can compress data to the entropy, but they pointed out that vast
quantities of data would be needed to approach ideal compression. Other algorithms,
most notably PPM (Section 2.18), suffer from the same problem. Often, a user is
willing to sacrifice compression performance in favor of easy implementation and the
knowledge that the performance of the algorithm is independent of the quantity of
the data. The recursive range reduction (3R) method described here generates decent
compression, is easy to program, and its performance is independent of the amount of
data to be compressed. These features make it an attractive candidate for compression
in embedded systems, low-cost microcontrollers, and other applications where space is
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limited or resources are constrained. The method is the brainchild of Yann Guidon who
described it in [3R 06]. The method is distantly related to variable-size codes.

The method is described first for a sorted list of integers, where its application is
simplest and no recursion is required. We term this version “range reduction” (RR).
We then show how RR can be extended to a recursive version (RRR or 3R) that can be
applied to any set of integers.

Given a list of integers, we first eliminate the effects of the sign bit. We either
rotate each integer to move the sign bit to the least-significant position (a folding) or
add an offset to all the integers, so they become nonnegative. The list is then sorted in
nonincreasing order. The first element of the list is the largest one, and we assume that
its most-significant bit is a 1 (i.e., it has no extra zeros on the left).

It is obvious that the integers that follow the first element may have some most-
significant zero bits, and the heart of the RR method is to eliminate most of those bits
while leaving enough information for the decoder to restore them. The first item in the
compressed stream is a header with the length L of the largest integer. This length is
stored in a fixed-size field whose size is sufficient for any data that may be encountered.
In the examples here, this size is four bits, allowing for integers up to 16 bits long. Once
the decoder inputs L, it knows the length of the first integer. The MSB of this integer
is a 1, so this bit can be eliminated and the first integer can be emitted in L — 1 bits.
The next integer is written on the output as an L-bit number, thereby allowing the
decoder to read it unambiguously. The decoder then checks the most-significant bits of
the second integer. If the leftmost k bits are zeros, then the decoder knows that the next
integer (i.e., the third one) was written without its k leftmost zeros and thus occupies
the next L — k bits in the compressed stream. This is how RR compresses a sorted list
of nonnegative integers. The compression efficiency depends on the data, but not on the
amount of data available for compression. The method does not improve by applying it
to vast quantities of data.

Table 1.18 is an example. The data consists of ten 7-bit integers. The 4-bit length
field is set to 6, indicating 7-bit integers (notice that L cannot be zero, so 6 indicates
a length of seven bits). The first integer is emitted minus its leftmost bit and the next
integer is output in its entirety. The third integer is also emitted as is, but its leftmost
zero (listed in bold) indicates to the decoder that the following (fourth) integer will have
only six bits.

The total size of the ten integers is 70 bits, and this should be compared with the
53 bits created by RR and the 64 bits resulting from the Rice codes (with n = 4) of the
same integers (see Section 7.9 for these codes). Compression is not impressive, but it is
obvious that it is not affected by the amount of data.

The limited experience available with RR seems to indicate (but a rigorous proof
is still needed) that this method performs best on data that decreases exponentially,
where each integer is about half the size of its predecessor. In such a list, each number
is one bit shorter than its predecessor. Worst results should be obtained with data that
either decreases slowly, such as (900, 899, 898, 897, 896), or that decreases fast, such as
(100000, 1000, 10, 1). These cases are illustrated in Table 1.19. Notice that the header
is the only side information sent to the decoder and that RR never expands the data.

Now for unsorted data. Given an unsorted list of integers, we can sort it, compress
it with RR, and then include side information about the sort, so that the decoder can
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Data RR code Rice code
0101 =6
1011101 011101 000001 1101
1001011 1001011 00001 1011
0110001 0110001 0001 0001
0101100 101100 001 1100
0001110 001110 11110
0001101 1101 11101
0001100 1100 11100
0001001 1001 11001
0000010 0010 1 0010
0000001 01 1 0001
70 53 64 bits

Table 1.18: Example of Range Reduction.

Data RR code Data RR code
0101 =6 1101 =13
1000010 000010 10011100010000 0011100010000
1000001 1000001 00001111101000 00001111101000
1000000 1000000 00000001100100 0001100100
0111111 0111111 00000000001010 0001010
0111110 111110 00000000000001 0001

0111101 111101
0111100 111101
49 49 70 52

Table 1.19: Range Reduction Worst Performance.

unsort the data correctly after decompressing it. An efficient method is required to
specify the relation between a list of numbers and its sorted version, and the method
described here is referred to as recursive range reduction or 3R.

The 3R algorithm involves the creation of a binary tree where each path from the
root to a leaf is a nonincreasing list of integers. Each path is encoded with 3R separately,
which requires a recursive algorithm (hence the word “recursive” in the algorithm’s
name). Figure 1.20 shows an example. Given the five unsorted integers A through E,
a binary tree is constructed where each pair of consecutive integers becomes a subtree
at the lowest level. Each of the five paths from the root to a leaf is a sorted list, and
it is compressed with 3R. It is obvious that writing the compressed results of all five
lists on the output would normally cause expansion, so only certain nodes are actually
written. The rule is to follow every path from the root and select the nodes along edges
that go to the left (or only those that go to the right). Thus, in our example, we write
the following values on the output: (1) a header with the length of the root, (2) the
3R-encoded path (root, A+B, A), (3) the value of node C [after the path (root, C+D+E, C)
is encoded], and (4) the value of node D [after the path (root, C+D+E, D+E, D) is encoded].
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A+B+C+D+E

A+B C+D+E

PN PR

A B C D+E

Figure 1.20: A Binary Tree Encoded With 3R.

The decoder reads the header and first path (root, A+B, A). It decodes the path
to obtain the three values and subtracts (A + B) — A to obtain B. It then subtracts
Root — (A+B) to obtain C+D+E. It inputs C and now it can decode the path (root, C+D+E,
C). Next, the decoder subtracts C from C+D+E to obtain D+E, it inputs D, and decodes
path (root, C+D+E, D+E, D). One more subtraction yields E.

This sounds like much work for very little compression, and it is! The 3R method is
not the most efficient compression algorithm, but it may find its applications. The nice
feature of the tree structure described here is that the number of nodes written on the
output equals the size of the original data. In our example there are five data items and
five 3R codes written on the output. It’s easy to see why this is generally true. Given a
list of n data items, we observe that they end up as the leaves of the binary tree. What
is eventually written on the output is half the nodes at each level of the tree. A complete
binary tree with n leaves has 2n nodes, so half of this number, n nodes, ends up on the
output.
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Figure 1.21: A Histogram.

It seems that 3R would be suitable for applications where the data does not fit any
of the standard statistical distributions and yet is not random. One example of such
data is the histogram of an image (Figure 1.21 shows the CMYK histograms of the Lena
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image, Figure 4.53). On the other hand, 3R is restricted to nonnegative integers and
the encoder requires two passes, one for constructing the tree and one for traversing it
and collecting nodes.

It has already been mentioned that RR never expands the data. However, when
fed with random data, 3R generates output that grows by almost one bit per data item.
Because of this feature, its developer refers to 3R as a nearly entropy encoder, not a real
entropy encoder.

Explanation. Because of the summations, random data are “averaged” so after a few
tree levels, this is like almost-monotonous data. These data are then further summed
together, still adding one bit of size per level but halving the number of sums each
time, so in the end it is equivalent to one bit per input element.

—Yann Guidon (private communication)

Compression algorithms are often described as squeezing,
squashing, crunching or imploding data, but these are not
very good descriptions of what is actually happening.

—James D. Murray and William Vanryper (1994)

e (= D



2
Statistical Methods

The methods discussed so far have one common feature, they assign fixed-size codes to
the symbols (characters or pixels) they operate on. In contrast, statistical methods use
variable-size codes, with the shorter codes assigned to symbols or groups of symbols that
appear more often in the data (have a higher probability of occurrence). Designers and
implementors of variable-size codes have to deal with the two problems of (1) assigning
codes that can be decoded unambiguously and (2) assigning codes with the minimum
average size.

Samuel Morse used variable-size codes when he designed his well-known telegraph
code (Table 2.1). It is interesting to note that the first version of his code, developed
by Morse during a transatlantic voyage in 1832, was more complex than the version he
settled on in 1843. The first version sent short and long dashes that were received and
drawn on a strip of paper, where sequences of those dashes represented numbers. Each
word (not each letter) was assigned a code number, and Morse produced a code book (or
dictionary) of those codes in 1837. This first version was therefore a primitive form of
compression. Morse later abandoned this version in favor of his famous dots and dashes,
developed together with Alfred Vail.

Morse established the first long-distance line, between Washington and
Baltimore, which opened on May 24, 1844 with a message selected by Miss
Annie Ellsworth, daughter of the commissioner of patents—the last phrase of
the twenty-third verse of the twenty—third chapter of the book of Numbers:
“What hath God wrought!”

—George B. Dyson, Darwin Among the Machines (1997)

Most of this chapter is devoted to the different statistical algorithms (Shannon-Fano,
Huffman, arithmetic coding, and others). However, we start with a short presentation of
important concepts from information theory. These lead to a definition of redundancy,
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so that later we can clearly see and calculate how redundancy is reduced, or eliminated,
by the different methods.

A - N - 1 - Period Lo
B - 0] -—= 2 - Comma -—..--
c -.- P -- 3 -- Colon -—. ..
Ch ---- Q --.- 4 .- Question mark ey
D - R - 5 ... Apostrophe Lo
E S 6 -.... Hyphen -
F - T - 7T - Dash -
G - U - 8§ --- Parentheses ——.-
H \Y - 9 -—-. Quotation marks .-..-.
I W - 0 -

J -—= X -..-

K -.- Y -.--

L - zZ -

M _

If the duration of a dot is taken to be one unit, then that of a dash is three units. The
space between the dots and dashes of one character is one unit, between characters it is three
units, and between words six units (five for automatic transmission). To indicate that a mistake
has been made and for the receiver to delete the last word, send “........ 7 (eight dots).

Table 2.1: The Morse Code for English.

2.1 Information Theory Concepts

We intuitively know what information is. We constantly receive and send information
in the form of text, sound, and images. We also feel that information is an elusive
nonmathematical quantity that cannot be precisely defined, captured, or measured.
The standard dictionary definitions of information are (1) knowledge derived from study,
experience, or instruction; (2) knowledge of a specific event or situation; intelligence; (3)
a collection of facts or data; (4) the act of informing or the condition of being informed;
communication of knowledge.

Imagine a person who does not know what information is. Would those definitions
make it clear to them? Unlikely.

The importance of information theory is that it quantifies information. It shows
how to measure information, so that we can answer the question “how much information
is included in this piece of data?”’ with a precise number! Quantifying information is
based on the observation that the information content of a message is equivalent to
the amount of surprise in the message. If I tell you something that you already know
(for example, “you and I work here”), I haven’t given you any information. If T tell
you something new (for example, “we both received an increase”), I have given you
some information. If I tell you something that really surprises you (for example, “only I
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received an increase”), I have given you more information, regardless of the number of
words I have used, and of how you feel about my information.

We start with a simple, familiar event that’s easy to analyze, namely the toss of a
coin. There are two results, so the result of any toss is initially uncertain. We have to
actually throw the coin in order to resolve the uncertainty. The result is heads or tails,
which can also be expressed as a yes or no, or as a 0 or 1; a bit.

A single bit resolves the uncertainty in the toss of a coin. What makes this example
important is the fact that it can easily be generalized. Many real-life problems can be
resolved, and their solutions expressed, by means of several bits. The principle of doing
so is to find the minimum number of yes/no questions that must be answered in order
to arrive at the result. Since the answer to a yes/no question can be expressed with
one bit, the number of questions will equal the number of bits it takes to express the
information contained in the result.

A slightly more complex example is a deck of 64 playing cards. For simplicity let’s
ignore their traditional names and numbers and simply number them 1 to 64. Consider
the event of person A drawing one card and person B having to guess what it was. The
guess is a number between 1 and 64. What is the minimum number of yes/no questions
that are necessary to guess the card? Those who are familiar with the technique of
binary search know the answer. Using this technique, B should divide the interval 1-64
in two, and should start by asking “is the result between 1 and 327” If the answer is
no, then the result is in the interval 33 to 64. This interval is then divided by two and
B’s next question should be “is the result between 33 and 487" This process continues
until the interval selected by B reduces to a single number.

It does not take much to see that exactly six questions are necessary to get at the
result. This is because 6 is the number of times 64 can be divided in half. Mathe-
matically, this is equivalent to writing 6 = log, 64. This is why the logarithm is the
mathematical function that quantifies information.

Another approach to the same problem is to ask the question; Given a nonnegative
integer IV, how many digits does it take to express it? The answer, of course, depends on
N. The greater N, the more digits are needed. The first 100 nonnegative integers (0 to
99) can be expressed by two decimal digits. The first 1000 such integers can be expressed
by three digits. Again it does not take long to see the connection. The number of digits
required to represent N equals approximately log N. The base of the logarithm is the
same as the base of the digits. For decimal digits, use base 10; for binary digits (bits),
use base 2. If we agree that the number of digits it takes to express IV is proportional
to the information content of N, then again the logarithm is the function that gives us
a measure of the information.

Exercise 2.1: What is the precise size, in bits, of the binary integer ¢ 7

Here is another approach to quantifying information. We are familiar with the ten
decimal digits. We know that the value of a digit in a number depends on its position.
Thus, the value of the digit 4 in the number 14708 is 4 x 103, or 4000, since it is in
position 3 (positions are numbered from right to left, starting from 0). We are also
familiar with the two binary digits (bits) 0 and 1. The value of a bit in a binary number
similarly depends on its position, except that powers of 2 are used. Mathematically,
there is nothing special about 2 or 10. We can use the number 3 as the basis of our
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arithmetic. This would require the three digits, 0, 1, and 2 (we might call them trits).
A trit ¢ at position 4 would have a value of ¢ x 3.

Exercise 2.2: Actually, there is something special about 10. We use base-10 numbers
because we have ten fingers. There is also something special about the use of 2 as the
basis for a number system. What is it?

Given a decimal (base 10) or a ternary (base 3) number with k digits, a natural
question is; how much information is included in this k-digit number? We answer this
by determining the number of bits it takes to express the given number. Assuming that
the answer is z, then 10¥ — 1 = 2% — 1. This is because 10¥ — 1 is the largest k-digit
decimal number and 2% — 1 is the largest x-bit binary number. Solving the equation
above for z as the unknown is easily done using logarithms and yields

log 10
=k .
. log 2

We can use any base for the logarithm, as long as we use the same base for log 10 and
log 2. Selecting base 2 simplifies the result, which becomes z = klog, 10 ~ 3.32k. This
shows that the information included in one decimal digit equals that contained in about
3.32 bits. In general, given numbers in base n, we can write x = k logy n, which expresses
the fact that the information included in one base-n digit equals that included in log, n
bits.

Exercise 2.3: How many bits does it take to express the information included in one
trit?

We now turn to a transmitter, a piece of hardware that can transmit data over a
communications line (a channel). In practice, such a transmitter sends binary data (a
modem is a good example). However, in order to obtain general results, we assume that
the data is a string made up of occurrences of the n symbols a; through a,. Such a set is
an n-symbol alphabet. Since there are n symbols, we can think of each as a base-n digit,
which means that it is equivalent to log, n bits. As far as the hardware is concerned,
this means that it must be able to transmit at n discrete levels.

If the transmitter takes 1/s time units to transmit a single symbol, then the speed of
the transmission is s symbols per time unit. A common example is s = 28800 baud (baud
is the term for “bits per second”), which translates to 1/s ~ 34.7 usec (where the Greek
letter u stands for “micro” and 1 usec = 1076 sec). In one time unit, the transmitter
can send s symbols, which as far as information content is concerned, is equivalent to
slogs n bits. We denote by H = slog, n the amount of information, measured in bits,
transmitted in each time unit.

The next step is to express H in terms of the probabilities of occurrence of the n
symbols. We assume that symbol a; occurs in the data with probability P;. The sum of
the probabilities equals, of course, unity: P+ Py+---+ P, = 1. In the special case where
all n probabilities are equal, P; = P, we get 1 = Y P, = nP, implying that P = 1/n,
and resulting in H = slogyn = slogy(1/P) = —slogy, P. In general, the probabilities
are different, and we want to express H in terms of all of them. Since symbol a; occurs
a fraction P; of the time in the data, it occurs on the average sP; times each time unit,
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so its contribution to H is —sP; logs P;. The sum of the contributions of all n symbols
to H is therefore H = —sY | P;log, P;.

As areminder, H is the amount of information, in bits, sent by the transmitter in one
time unit. The amount of information contained in one base-n symbol is therefore H/s
(because it takes time 1/s to transmit one symbol), or — Y | P; log, P;. This quantity is
called the entropy of the data being transmitted. In analogy we can define the entropy
of a single symbol a; as —P;log, P;. This is the smallest number of bits needed, on
average, to represent the symbol.

(Information theory was developed, in the late 1940s, by Claude Shannon, of Bell
Labs, and he chose the term entropy because this term is used in thermodynamics to
indicate the amount of disorder in a physical system.)

Since I think it is better to take the names of such quantities as these, which
are important for science, from the ancient languages, so that they can be introduced
without change into all the modern languages, I propose to name the magnitude S
the entropy of the body, from the Greek word “trope” for “transformation.” I have
intentionally formed the word “entropy” so as to be as similar as possible to the word
“energy” since both these quantities which are to be known by these names are so
nearly related to each other in their physical significance that a certain similarity in
their names seemed to me advantageous.

—Rudolph Clausius, 1865 (translated by Hans C. von Baeyer)

The entropy of data depends on the individual probabilities P; and is largest (see
Exercise 2.4) when all n probabilities are equal. This fact is used to define the re-
dundancy R in the data. It is defined as the difference between a symbol set’s largest
possible entropy and its actual entropy. Thus

—znjplogzp
1

R:

— Z Pilog, P;| = logyn + ZPZ- log, P;.
1 1

Thus, the test for fully compressed data (no redundancy) is logy n + >_| P;log, P; = 0.
Exercise 2.4: Analyze the entropy of a two-symbol set.

Given a string of characters, the probability of a character can be determined by
counting the frequency of the character and dividing by the length of the string. Once
the probabilities of all the characters are known, the entropy of the entire string can be
calculated. With current availability of powerful mathematical software, it is easy to
calculate the entropy of a given string. The Mathematica code

Frequencies[list_] :=Map[{Count[1ist,#],#}&, Union[list]];

Entropy[list_]:=-Plus Q@ N[# Log[2,#]]& @
(First[Transpose[Frequencies([list]]]/Length[list]);

Characters["swiss miss"]

Entropy [%]
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You have two chances—
One of getting the germ
And one of not.

And if you get the germ
You have two chances—
One of getting the disease
And one of not.

And if you get the disease
You have two chances—
One of dying

And one of not.

And if you die—

Well, you still have two chances.

—Unknown

does that and shows that, for example, the entropy of the string swiss miss is 1.96096.

The main theorem proved by Shannon says essentially that a message of n symbols
can, on average, be compressed down to nH bits, but not further. It also says that
almost optimal compressors (called entropy encoders) exist, but does not show how to
construct them. Arithmetic coding (Section 2.14) is an example of an entropy encoder,
as are also the dictionary-based algorithms of Chapter 3 (but the latter require huge
quantities of data to perform at the entropy level).

2.1.1 Algorithmic Information Content

Consider the following three sequences:

S1 =10010010010010010010010010010010010010.. .. .,
So =01011011011010110110101101101101101011 ... .,
S3 =01110010011110010000101100000011101111 . ...

The first sequence, S1, is just a repetition of the simple pattern 100. S is less regular.
It can be described as a 01, followed by r; repetitions of 011, followed by another 01,
followed by ry repetitions of 011, etc., where ry = 3, ro = 2, r3 = 4, and the other
r;’s are not shown. Ss is more difficult to describe, since it does not seem to have any
apparent regularity; it seems random. Notice that the meaning of the ellipsis is clear in
the case of Sy (just repeat the pattern “100”), less clear in Sy (what are the other r;’s?),
and completely unknown in S (is it random?).

We now assume that these sequences are very long (say, 999,999 bits each), and
each continues “in the same way.” How can we define the complexity of such a binary
sequence, at least qualitatively? One way to do so, called the Kolmogorov-Chaitin
complexity (KCC), is to define the complexity of a binary string .S as the length, in bits,
of the shortest computer program that, when executed, generates S (display it, print it,
or write it on file). This definition is also called the algorithmic information content of
string S.
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A computer program P; to generate string S; could just loop 333,333 times and
print “100” in each iteration. Alternatively, the program could loop 111,111 times and
print “100100100” in each iteration. Such a program is very short (especially when
compared with the length of the sequence it generates), concurring with our intuitive
feeling that S7 has low complexity.

A program P, to generate string Sy should know the values of all the r;’s. They
could either be built in or input by the user at run time. The program initializes a
variable ¢ to 1. It then prints “01”, loops r; times printing “011” in each iteration,
increments i by 1, and repeats this behavior until 999,999 bits have been printed. Such
a program is longer than Pj, thereby reflecting our intuitive feel that S5 is more complex
than Sl.

A program P; to generate S3 should (assuming that we cannot express this string
in any regular way) simply print all 999,999 bits of the sequence. Such a program is as
long as the sequence itself, implying that the KCC of S5 is as large as Sjs.

Using this definition of complexity, Gregory Chaitin showed (see [Chaitin 77| or
[Chaitin 97]) that most binary strings of length n are random; their complexities are
close to n. However, the “interesting” (or “practical”) binary strings, those that are
used in practice to represent text, images, and sound, and are compressed all the time,
are similar to Se. They are not random. They exhibit some regularity, which makes it
possible to compress them. Very regular strings, such as Si, are rare in practice.

Algorithmic information content is a measure of the amount of information in-
cluded in a message. It is related to the KCC and is different from the way information
is measured in information theory. Shannon’s information theory defines the amount of
information in a string by considering the amount of surprise this information contains
when revealed. Algorithmic information content, on the other hand, measures informa-
tion that has already been revealed. An example may serve to illustrate this difference.
Imagine two persons A (well-read, sophisticated and knowledgeable) and B (inexperi-
enced and naive), reading the same story. There are few surprises in the story for A.
He has already read many similar stories and can predict the development of the story
line, the behavior of the characters, and even the end. The opposite is true for B. As he
reads, he is surprised by the (to him) unexpected twists and turns that the story takes
and by the (to him) unpredictable behavior of the characters. The question is; How
much information does the story really contain?

Shannon’s information theory tells us that the story contains less information for
A than for B, since it contains fewer surprises for A than for B. Recall that A’s
mind already has memories of similar plots and characters. As they read more and
more, however, both A and B get more and more familiar and therefore less and less
surprised (although at different rates). Thus, they get less and less (Shannon’s type
of) information. At the same time, as more of the story is revealed to them, their
minds’ complexities increase (again at different rates). Thus, they get more algorithmic
information content. The sum of Shannon’s information and KCC is therefore constant
(or close to constant).

This example suggests a way to measure the information content of the story in an
absolute way, regardless of the particular reader. It is the sum of Shannon’s informa-
tion and the KCC. This measure has been proposed by the physicist Wojciech Zurek
[Zurek 89], who termed it “physical entropy.”
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2.2 Variable-Size Codes

Consider the four symbols a1, as, as, and a4. If they appear in our data strings with
equal probabilities (= 0.25), then the entropy of the data is —4(0.25log, 0.25) = 2. Two
is the smallest number of bits needed, on average, to represent each symbol in this case.
We can simply assign our symbols the four 2-bit codes 00, 01, 10, and 11. Since the
probabilities are equal, the redundancy is zero and the data cannot be compressed below
2 bits/symbol.

Next, consider the case where the four symbols occur with different probabilities
as shown in Table 2.2, where a; appears in the data (on average) about half the time,
as and agz have equal probabilities, and a4 is rare. In this case, the data has entropy
—(0.491og, 0.49+0.25log, 0.2540.25 log, 0.25+0.01 log, 0.01) ~ —(—0.050—0.5—0.5 —
0.066) = 1.57. The smallest number of bits needed, on average, to represent each symbol
has dropped to 1.57.

Symbol Prob. Codel Code2

ay .49 1 1
as .25 01 01
as .25 010 000
a4 .01 001 001

Table 2.2: Variable-Size Codes.

If we again assign our symbols the four 2-bit codes 00, 01, 10, and 11, the redundancy
would be R = —1.57 + log,4 = 0.43. This suggests assigning wvariable-size codes to
the symbols. Codel of Table 2.2 is designed such that the most common symbol, a1,
is assigned the shortest code. When long data strings are transmitted using Codel,
the average size (the number of bits per symbol) is 1 x 0.49 + 2 x 0.25 + 3 x 0.25 +
3 x 0.01 = 1.77, which is very close to the minimum. The redundancy in this case
is R = 1.77 — 1.57 = 0.2 bits per symbol. An interesting example is the 20-symbol
string ajasasaa3a3a4a2a101a202a01 1030101020301, where the four symbols occur with
(approximately) the right frequencies. Encoding this string with Codel yields the 37
bits:

1]/010|01]1]010|010|001]|01|1|1]01]|01|1|1]010|1|1|01]|010]|1
(without the vertical bars). Using 37 bits to encode 20 symbols yields an average size of
1.85 bits/symbol, not far from the calculated average size. (The reader should bear in
mind that our examples are short. To get results close to the best that’s theoretically
possible, an input stream with at least thousands of symbols is needed.)

However, when we try to decode the binary string above, it becomes obvious that
Codel is bad. The first bit is 1, and since only a; is assigned this code, it (a1) must be
the first symbol. The next bit is 0, but the codes of as, a3, and a4 all start with a 0, so
the decoder has to read the next bit. It is 1, but the codes of both as and a3 start with
01. The decoder does not know whether to decode the string as 1|010[01. .., which is
aiasas ..., or as 101|001 ..., which is ajasay . ... Codel is thus ambiguous. In contrast,
Code2, which has the same average size as Codel, can be decoded unambiguously.
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The property of Code2 that makes it so much better than Codel is called the prefix
property. This property requires that once a certain bit pattern has been assigned as
the code of a symbol, no other codes should start with that pattern (the pattern cannot
be the prefiz of any other code). Once the string “1” was assigned as the code of aq,
no other codes could start with 1 (i.e., they all had to start with 0). Once “01” was
assigned as the code of ag, no other codes could start with 01. This is why the codes of
a3 and a4 had to start with 00. Naturally, they became 000 and 001.

Designing variable-size codes is therefore done by following two principles: (1) As-
sign short codes to the more frequent symbols and (2) obey the prefix property. Following
these principles produces short, unambiguous codes, but not necessarily the best (i.e.,
shortest) ones. In addition to these principles, an algorithm is needed that always pro-
duces a set of shortest codes (ones with the minimum average size). The only input
to such an algorithm is the frequencies (or the probabilities) of the symbols of the al-
phabet. Two such algorithms, the Shannon-Fano method and the Huffman method, are
discussed in Sections 2.7 and 2.8.

(It should be noted that not all statistical compression methods assign variable-
size codes to the individual symbols of the alphabet. A notable exception is arithmetic
coding, Section 2.14.)

2.3 Prefix Codes

A prefix code is a variable-size code that satisfies the prefix property. The binary
representation of the integers does not satisfy the prefix property. Another disadvantage
of this representation is that the size n of the set of integers has to be known in advance,
since it determines the code size, which is 1 + |[log, n|. In some applications, a prefix
code is required to code a set of integers whose size is not known in advance. Several
such codes, most of which are due to Peter Elias [Elias 75|, are presented here. More
information on prefix codes can be found in the excellent, 15-page technical report
[Fenwick 96a].

2.3.1 The Unary Code

The unary code of the positive integer n is defined as n — 1 ones followed by a single 0
(Table 2.3) or, alternatively, as n — 1 zeros followed by a single one. The length of the
unary code for the integer n is therefore n bits. Stone-age people indicated the integer
n by marking n adjacent vertical bars on a stone, so the unary code is sometimes called
a stone-age binary and each of its n — 1 ones is called a stone-age bit.

n  Code Alt. Code
1 0 1
2 10 01
3 110 001
4 1110 0001
5 11110 00001

Table 2.3: Some Unary Codes.
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o Exercise 2.5: Discuss the use of the unary code as a variable-size code.

It is also possible to define general unary codes, also known as start-step-stop codes.
Such a code depends on a triplet (start, step, stop) of integer parameters and is defined
as follows: Codewords are created to code symbols used in the data, such that the nth
codeword consists of n ones, followed by one 0, followed by all the combinations of a
bits where a = start + n X step. If a = stop, then the single 0 preceding the a bits is
dropped. The number of codes for a given triplet is finite and depends on the choice
of parameters. Tables 2.4 and 2.5 show the 680 codes of (3,2,9) and the 2044 codes of
(2,1,10) (see also Table 4.112). These codes are discussed in Section 3.9 in connection
with the LZFG compression method, and in Section 4.16 for block matching lossless
image compression.

a= nth Number of Range of
n 3+n-2 codeword codewords  integers
0 3 Ozxx 22 =38 0-7
1 5 10zzrTT 2% =32 8-39
2 7 110zzxzzrre 27 =128  40-167
3 9 11 lzzzrrrrrs 29 =512  168-679
Total 680
Table 2.4: The General Unary Code (3,2,9).
a= nth Number of  Range of
n 2+4+n-1 codeword  codewords integers
0 2 Oxx 4 0-3
1 3 10xzx 8 4-11
2 4 110zxzx 16 12-27
3 ) 1110zxz22 32 28-59
8 10 11...1zx...x 1024 10202043
—— =
8 10 —
Total 2044

Table 2.5: The General Unary Code (2,1,10).

The number of different general unary codes is

25top+step _ QStart

25tep —1

)

Notice that this expression increases exponentially with parameter “stop,” so large sets

of these codes can be generated with small values of the three parameters.

o Exercise 2.6: What codes are defined by the parameters (n, 1,n) and what by (0,0, c0)?

o Exercise 2.7: How many codes are produced by the triplet (1,1,30)?
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o Exercise 2.8: Derive the general unary code for (10,2,14).

2.3.2 Other Prefix Codes

Four more prefix codes are described in this section. We use B(n) to denote the binary
representation of the integer n. Thus, |B(n)| is the length, in bits, of this representation.
We also use B(n) to denote B(n) without its most significant bit (which is always 1).

Code C1 consists of two parts. To code the positive integer n, we first generate the
unary code of | B(n)| (the size of the binary representation of n), then append B(n) to it.
An example is n = 16 = 100005. The size of B(16) is 5, so we start with the unary code
11110 (or 00001) and append B(16) = 0000. Thus, the complete code is 11110/0000 (or
00001]0000). Another example is n = 5 = 1015 whose code is 110[01. The length of
Cy(n) is 2|logyn| + 1 bits. Notice that this code is identical to the general unary code
(0,1, 00).

Code Cs is a rearrangement of C7 where each of the 1 + [log, n| bits of the first
part (the unary code) of C; is followed by one of the bits of the second part. Thus, code
C3(16) = 101010100 and Cy(5) = 10110.

Code Cj starts with |B(n)| coded in Cy, followed by B(n). Thus, 16 is coded as
Co(5) = 11101 followed by B(16) = 0000, and 5 is coded as code C3(3) = 110 followed
by B(5) = 01. The size of C3(n) is 1 + |log, n] + 2[log,(1 + [log, n])].

Code Cy consists of several parts. We start with B(n). To the left of this we
write the binary representation of |[B(n)| — 1 (the length of n, minus 1). This continues
recursively, until a 2-bit number is written. A zero is then added to the right of the entire
number, to make it decodable. To encode 16, we start with 10000, add |B(16)| — 1 =
4 = 1002 to the left, then |B(4)] — 1 = 2 = 102 to the left of that and finally, a
zero on the right. The result is 10/100/10000]0. To encode 5, we start with 101, add
|B(5)] — 1 =2 =103 to the left, and a zero on the right. The result is 10/101|0.

o Exercise 2.9: How does the zero on the right make the code decodable?

Table 2.6 shows examples of the four codes above, as well as B(n) and B(n). The
lengths of the four codes shown in the table increases as log,n, in contrast to the
length of the unary code, which increases as n. These codes are therefore good choices
in cases where the data consists of integers n with probabilities that satisfy certain
conditions. Specifically, the length L of the unary code of n is L = n = log, 2",
so it is ideal for the case where P(n) = 27% = 27", The length of code C;(n) is
L =1+ 2|logyn| = log, 2 + logy n? = logy(2n?), so it is ideal for the case where

_o—L _
The length of code Cs(n) is
L =1+ |logyn| +2|logy(1+ |logyn|)| =log, 2 + 2|log log, 2n] + |logy ],

so it is ideal for the case where
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n Unary B(n) B(n) Ch Cs Cs Ca
1 0 1 0| 0 0| 0
2 10 10 0 10/0 100 1000 100
3 110 11 10]1 110 100|1 11]o
4 1110 100 00 11000 10100 110/00 10/100]0
5 11110 101 01 110/01 10110 110|01 10[101]0
6 111110 110 10 110[10 11100 110{10 10[110|0
7 111 11 110[11 11110 11011 10[111]0
8 1000 000 1110/000 1010100  10100/000 11|1000|0
9 1001 001 1110/001 1010110  10100]001 11|1001]0
10 1010 010 1110010 1011100  10100/010 11]1010|0
11 1011 011 1110/011 1011110  10100]011 11|1011]0
12 1100 100 1110|100 1110100  10100|100 11[1100|0
13 1101 101 1110101 1110110  10100|101 11|1101]0
14 1110 110 1110]110 1111100  10100|110 11|1110]0
15 1111 111 1110[111 1111110  10100|111 11|1111]0
16 10000 0000  11110[0000 101010100  10110/0000 10]100|10000|0
31 11111 1111 11110[1111 111111110  10110[1111 10/100/11111]0
32 100000 00000  111110/00000 10101010100  11100|00000 10]101|100000]0
63 111111 11111 111110[11111 11111111110 11100|11111 10/101]111111]0
64 1000000 000000 1111110/000000 1010101010100  11110[000000  10]110|1000000|0
127 1111111 111111 1111110[111111 1111111111110  11110[111111  10|110|1111111]0
128 10000000 0000000 11111110[0000000 101010101010100 1010100/0000000 10|111]|10000000/0
255 11111111 1111111 111111101111111 111111111111110 1010100|1111111 10|111|11111111|0

Table 2.6: Some Prefix Codes.

n Unary C1 Cs

1 0.5 0.5000000

2 0.25 0.1250000 0.2500000
3 0.125 0.0555556  0.0663454
4 0.0625 0.0312500 0.0312500
) 0.03125 0.0200000 0.0185482
6 0.015625 0.0138889 0.0124713
7 0.0078125 0.0102041 0.0090631
8 0.00390625 0.0078125 0.0069444

Table 2.7: Ideal Probabilities of Eight Integers for Three Codes.
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Table 2.7 shows the ideal probabilities that the first eight positive integers should have
for the three codes above to be used.

More prefix codes for the positive integers, appropriate for special applications, may
be designed by the following general approach. Select positive integers v; and combine
them in a list V' (which may be finite or infinite according to needs). The code of the
positive integer n is prepared in the following steps:

1. Find k such that i

N

—1

.
I
A

2. Compute the difference
k—1
d=n— Z v; — 1.
i=1
k-1

The largest value of n is Zlf v;, so the largest value of d is Zf vi—y1 vi—l=uv—1,
a number that can be written in [log, v ] bits. The number d is encoded, using the
standard binary code, either in this number of bits, or if d < 2/1°822+1 — 4, it is encoded
in |logy vg] bits.
3. Encode n in two parts. Start with k encoded in some prefix code, and concatenate
the binary code of d. Since k is coded in a prefix code, any decoder would know how
many bits to read for k. After reading and decoding k, the decoder can compute the
value 21922 vk — 4, which tells it how many bits to read for d.

A simple example is the infinite sequence V = (1,2,4,8,...,2¢71 . ..) with k coded
in unary. The integer n = 10 satisfies

3 4
Z’Ui <10<L Z’Ui,
i=1 i=1

so k = 4 (with unary code 1110) and d = 10 — 2?21 v; — 1 = 2. The code of 10 is thus
1110|010.

See also the Golomb code, Section 2.5, the phased-in binary codes of Section 2.9.1,
the Rice codes (Section 7.9), and the subexponential code of Section 4.20.1.

Number Bases

Decimal numbers use base 10. The number 20371, e.g., has a value of 2 x 103 4 0 x
102 +3 x 10" +7 x 10°. We can say that 2037 is the sum of the digits 2, 0, 3, and 7, each
weighted by a power of 10. Fractions are represented in the same way, using negative
powers of 10. Thus, 0.82 = 8 x 107! +2 x 1072 and 300.7 =3 x 10> + 7 x 10~ 1.
Binary numbers use base 2. Such a number is represented as a sum of its digits,
each weighted by a power of 2. Thus, 101.115 = 1 x224+0x 2 +1x2041x 271 41x 272,
Since there is nothing special about 10 or 2,*, it should be easy to convince yourself
that any positive integer n > 1 can serve as the basis for representing numbers. Such
a representation requires n “digits” (if n > 10, we use the ten digits and the letters
A, B, C,...) and represents the number dsdsdidy.d—1 as the sum of the digits d;, each
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multiplied by a power of n, thus dsn® 4+ don? + din' + don® + d_in~'. The base for
a number system does not have to consist of powers of an integer but can be any
superadditive sequence that starts with 1.

Definition: A superadditive sequence ag, a1, as,... is one where any element a; is
greater than the sum of all its predecessors. An example is 1, 2, 4, 8, 16, 32, 64,. .. where
each element equals one plus the sum of all its predecessors. This sequence consists of
the familiar powers of 2, so we know that any integer can be expressed by it using just
the digits 0 and 1 (the two bits). Another example is 1, 3, 6, 12, 24, 50,. .., where each
element equals 2 plus the sum of all its predecessors. It is easy to see that any integer
can be expressed by it using just the digits 0, 1, and 2 (the three trits).

Given a positive integer k, the sequence 1, 1+ k, 2 + 2k, 4 + 4k, ..., 2 (1 + k) is
superadditive, because each element equals the sum of all its predecessors plus k. Any
nonnegative integer can be uniquely represented in such a system as a number x ... zxy,
where x are bits and y is a single digit in the range [0, k].

In contrast, a general superadditive sequence, such as 1, 8, 50, 3102 can be used
to represent integers, but not uniquely. The number 50, e.g., equals 8 x 6 + 1 + 1,
so it can be represented as 0062 = 0 x 31024+ 0 x 50 + 6 x 8 + 2 x 1, but also as
0100 =0x31024+1x504+0x8+0 x 1.

It can be shown that 1 4 r + 72 4 --- 4 r¥ is less than 7**! for any real number
r > 1. This implies that the powers of any real number r > 1 can serve as the base of a
number system using the digits 0,1,2,...,d for some d.

The number ¢ = (1 +1/5) &~ 1.618 is the well-known golden ratio. It can serve as
the base of a number system using the two binary digits. Thus, e.g., 100.14 = P +o !~
3.2310.

Some real bases have special properties. For example, any positive integer R can be
expressed as R = by Fy +boFy + b3 F3 4+ by F5+- - - (that’s by F5, not by Fy), where the b; are
either 0 or 1, and the F; are the Fibonacci numbers 1,2,3,5,8,13,.... This representa-
tion has the interesting property that the string b1bs ... does not contain any adjacent
1’s (this property is used by certain data compression methods; see Section 8.5.4). As an
example, the integer 33 equals the sum 1+ 3+ 8+ 21, so it is expressed in the Fibonacci
base as the 7-bit number 1010101.

Exercise 2.10: Show how the Fibonacci numbers can be used to construct a prefix
code.

A nonnegative integer can be represented as a finite sum of binomial coefficients

a b c d
— <
! <1>+<2)+(3>+<4)+ o vheedsasheesd

are integers and ( ) is the binomial coefficient it

:l AT This is the binomial number
! (i—n)!
system.

*Actually, there is. Two is the smallest integer that can be a base for a number system. Ten is the

number of our fingers.
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Thus it was an imposing word which Tarzan made of GOD. The masculine prefix of
the apes is BU, the feminine MU; “g” Tarzan had named LA, “0” he pronounced TU,
and “d” was MO. So the word God evolved itself into BULAMUTUMUMO, or, in
English, he-g-she-o-she-d.

—Edgar Rice Burroughs, The Jungle Tales of Tarzan

2.4 Tunstall Code

The main advantage of variable-size codes is their variable size. Some codes are short,
and it is this feature that produces compression. On the downside, variable-size codes
are difficult to work with. The encoder has to accumulate and append several such
codes in a short buffer, wait until n bytes of the buffer are full of code bits (where n
must be at least 1), write the n bytes on the output, shift the buffer n bytes, and keep
track of the location of the last bit placed in the buffer. The decoder has to go through
the reverse process. It is definitely easier to deal with fixed-size codes, and the Tunstall
codes described here are one example of how such codes can be designed. The idea is to
construct a set of fixed-size codes, each encoding a variable-size string of input symbols.

Imagine an alphabet consisting of two symbols A and B where A is more common.
Given a typical string from this alphabet, we expect substrings of the form AA, AAA,
AB, AAB, and B, but rarely strings of the form BB. We can therefore assign fixed-size
codes to the following five substrings as follows. AA = 000, AAA = 001, AB = 010,
ABA =011, and B = 100. A rare occurrence of two consecutive Bs will be encoded by
100100, but most occurrences of B will be preceded by an A and will be coded by 010,
011, or 100.

This example is both bad and inefficient. It is bad, because AAABAAB can be
encoded either as the four codes AAA, B, AA, B or as the three codes AA, ABA,
AB; encoding is not unique and may require several passes to determine the shortest
code. This happens because our five substrings don’t satisfy the prefix property. This
example is inefficient because only five of the eight possible 3-bit codes are used. An n-
bit Tunstall code should use all 2" codes. Another point is that our codes were selected
without considering the relative frequencies of the two symbols, and as a result we cannot
be certain that this is the best code for our alphabet.

Thus, an algorithm is needed in order to develop the best n-bit Tunstall code for
a given alphabet of N symbols and such an algorithm is given in [Tunstall 67]. Given
an alphabet of IV symbols, we start with a code table that consists of the symbols. We
then iterate as long as the size of the code table is less than or equal to the number of
codes 2™. Each iteration performs the following steps:

m  Select the symbol with largest probability in the table. Call it S.

= Remove S and add the N substrings Sx where x goes over all the N symbols. This
step increaes the table size by N — 1 symbols (some of them may be substrings). Thus,
after iteration k, the table size will be N + k(N — 1) elements.

s If N+ k(N —1) <2 perform another iteration.
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Tt is easy to see that the elements (symbols and substrings) of the table satisfy the
prefix property and thus ensure unique encodability. If the first iteration adds element
AB to the table, it must have removed element A. Thus, A is not a prefix of AB. If
the next iteration creates element ABR, then it has removed element AB, so AB is
not a prefix of ABR. This construction also minimizes the average number of bits per
alphabet symbol because of the requirement that each iteration select the element (or
an element) of maximum probability. This requirement is similar to the way a Huffman
code is constructed (Section 2.8), and we illustrate it by an example.

0.343 0.098 0.049
(c)

Figure 2.8: Tunstall Code Example.

Given an alphabet with the three symbols A, B, and C (N = 3), with probabilities
0.7, 0.2, and 0.1, respectively, we decide to construct a set of 3-bit Tunstall codes (thus,
n = 3). We start our code table as a tree with a root and three children (Figure 2.8a).
In the first iteration, we select A and turn it into the root of a subtree with children AA,
AB, and AC with probabilities 0.49, 0.14, and 0.07, respectively (Figure 2.8b). The
largest probability in the tree is that of node AA, so the second iteration converts it to
the root of a subtree with nodes AAA, AAB, and AAC with probabilities 0.343, 0.098,
and 0.049, respectively (Figure 2.8¢). After each iteration we count the number of leaves
of the tree and compare it to 23 = 8. After the second iteration there are seven leaves in
the tree, so the loop stops. Seven 3-bit codes are arbitrarily assigned to elements AAA,
AAB, AAC, AB, AC, B, and C. The eighth available code should be assigned to a
substring that has the highest probability and also satisfies the prefix property.

The average bit length of this code is easily computed as

3

=1.37.
3(0.343 + 0.098 + 0.049) + 2(0.14 + 0.07) + 0.2+ 0.1

In general, let p; and I; be the probability and length of tree node 7. If there are m nodes
in the tree, the average bit length of the Tunstall code is n/ > -, p;l;. The entropy of
our alphabet is —(0.7 X log, 0.7 4+ 0.2 x log, 0.2+ 0.1 x log, 0.1) = 1.156, so the Tunstall
codes do not provide the best compression.

An important property of the Tunstall codes is their reliability. If one bit becomes
corrupt, only one code will get bad. Normally, variable-size codes do not feature any
reliability. One bad bit may corrupt the decoding of the remainder of a long sequence
of such codes. It is possible to incorporate error-control codes in a string of variable-size
codes, but this increases its size and reduces compression.
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2.5 The Golomb Code

The seventeenth century French mathematician Blaise Pascal is known today mostly
for his contributions to the field of probability, but he made important contributions
during his short life to many areas. It is generally agreed today that he invented (an
early version of) the game of roulette (although some believe that this game originated
in China and was brought to Europe by Dominican monks who were trading with the
Chinese). The modern version of roulette appeared in 1842.

The roulette wheel has 37 shallow depressions (known as slots) numbered 0 through
36 (the American version has 38 slots numbered 00, 0, and 1 through 36). The dealer
(croupier) spins the wheel while sending a small ball rolling in the opposite direction
inside the wheel. Players can place bets during the spin until the dealer says “no more
bets.” When the wheel stops, the slot where the ball landed determines the outcome of
the game. Players who bet on the winning number are paid according to the type of bet
they placed, while players who bet on the other numbers lose their entire bets to the
house. [Bass 92] is an entertaining account of an attempt to scientifically predict (and
benefit from) the result of a roulette spin.

The simplest type of bet is on a single number. A player winning this bet is paid
35 times the amount bet. Thus, a player who plays the game repeatedly and bets $1
each time expects to lose 36 games and win one game out of every set of 37 games on
average. The player therefore loses on average $37 for every $35 won.

The probability of winning a game is p = 1/37 ~ 0.027027 and that of losing a game
is the much higher ¢ = 1 —p = 36/37 ~ 0.972973. The probability P(n) of winning once
and losing n — 1 times in a sequence of n games is the product ¢"~'p. This probability
is normalized because

oo oo oo
I S
n=1 n=1 n=0 q p

As n grows, P(n) shrinks slowly because of the much higher value of q. The values of
P(n) forn=1,2,...,10 are 0.027027, 0.026297, 0.025586, 0.024895, 0.024222, 0.023567,
0.022930, 0.022310, 0.021707, and 0.021120.

The probability function P(n) is said to obey a geometric distribution. The rea-
son for the name “geometric” is the resemblance of this distribution to the geometric
sequence. A sequence where the ratio between consecutive elements is a constant ¢ is
called geometric. Such a sequence has elements a, aq, ag?, ag®,.... The (infinite) sum
of these elements is a geometric series Z?io aq’. The interesting case is where ¢ satisfies
—1 < ¢ < 1, in which the series converges to a/(1 — ¢). Figure 2.9 shows the geometric
distribution for p = 0.2, 0.5, and 0.8.

Many compression methods are based on run-length encoding (RLE). Imagine a
binary string where a zero appears with probability p and a one appears with probability
1—p. If p is large, there will be runs of zeros, suggesting the use of RLE to compress the
string. The probability of a run of n zeros is p™, and the probability of a run of n zeros
followed by a 1 is p™(1 — p), indicating that run lengths are distributed geometrically.
A naive approach to compressing such a string is to compute the probability of each
run length and apply the Huffman method (Section 2.8) to obtain the best prefix codes
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2 4 6 8 10

Figure 2.9: Geometric Distributions For p = 0.2, 0.5, and 0.8.

for the run lengths. In practice, however, there may be a large number of run lengths
and this number may not be known in advance. A better approach is to construct an
infinite family of optimal prefix codes, such that no matter how long a run is, there
will be a code in the family to encode it. The codes in the family must depend on the
probability p, so we are looking for an infinite set of parametrized prefix codes. The
Golomb codes described here [Golomb 66], are such codes and they are the best ones
for the compression of data items that are distributed geometrically.

Let’s first examine a few numbers to see why such codes must depend on p. For
p = 0.99, the probabilities of runs of two zeros and of 10 zeros are 0.992 = 0.9801
and 0.9910 = 0.9, respectively (both large). In contrast, for p = 0.6, the same run
lengths have the much smaller probabilities of 0.36 and 0.006. The ratio 0.9801/0.36 is
2.7225, but the ratio 0.9/0.006 is the much greater 150. Thus, a large p implies higher
probabilities for long runs, whereas a small p implies that long runs will be rare.

Two relevant statistical concepts are the mean and median of a sequence of run
lengths. They are illustrated by the binary string

00000100110001010000001110100010000010001001000110100001001 (2.1)

that has the 18 run lengths 5, 2,0, 3, 1,6, 0,0, 1, 3,5, 3, 2, 3,0, 1, 4, and 2. Its mean is
the average (54+2+0+3+1+64+0+0+14+3+5+3+2+3+0+1+4+2)/18 =~ 2.28.
Its median m is the value such that about half the run lengths are shorter than m and
about half are equal to or greater than m. To find m, we sort the 18 run lengths to
obtain 0, 0, 0,0, 1,1, 1,2,2,2,3,3,3,3,4,5,5, and 6 and find that the median (the
central number) is 2.

We are now ready for a description of the Golomb code.

Encoding. The Golomb code for nonnegative integers n depends on the choice
of a parameter m (we’ll see later that for RLE, m should depend on the probability p
and on the median of the run lengths). Thus, it is a parametrized prefix code, which
makes it especially useful in cases where good values for the parameter can be computed
or estimated (see, for example, Section 4.22). The first step in computing the Golomb
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code of the nonnegative integer m is to compute the three quantities ¢ (quotient), r
(remainder), and ¢ by

q= {EJ , T=mn—gm, and ¢ = [logy m],
m

following which the code is constructed in two parts; the first is the value of ¢, coded in
unary (Exercise 2.5), and the second is the binary value of r coded in a special way. The
first 2¢ — m values of r are coded, as unsigned integers, in ¢ — 1 bits each, and the rest
are coded in ¢ bits each (ending with the biggest ¢-bit number, which consists of ¢ 1’s).
The case where m is a power of 2 (m = 2°) is special because it requires no (¢ — 1)-bit
codes. We know that n = r + gm; so once a Golomb code is decoded, the values of ¢
and r can be used to easily reconstruct n.

Examples. Choosing m = 3 produces ¢ = 2 and the three remainders 0, 1, and 2.
We compute 22 — 3 = 1, so the first remainder is coded in ¢ — 1 = 1 bit to become 0,
and the remaining two are coded in two bits each ending with 115, to become 10 and 11.
Selecting m = 5 results in ¢ = 3 and produces the five remainders 0 through 4. The first
three (23 —5 = 3) are coded in ¢—1 = 2 bits each, and the remaining two are each coded
in three bits ending with 1115. Thus, 00, 01, 10, 110, and 111. The following simple
rule shows how to encode the ¢-bit numbers such that the last of them will consist of ¢
1’s. Denote the largest of the (¢ — 1)-bit numbers by b, then construct the integer b+ 1
in ¢ — 1 bits, and append a zero on the right. The result is the first of the c-bit numbers
and the remaining ones are obtained by incrementing.

Table 2.10 shows some examples of m, ¢, and 2¢ —m, as well as some Golomb codes
for m = 2 through 13.

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
c 1 2 2 3 3 3 3 4 4 4 4 4 4
2—-m 0 1 0 3 2 1 0 7 6 5 4 2 1

m/n| 0 1 2 3 4 5 6 7 8 9 10 11 12
2 0[0 0]I 10/0 10]1 110/0 1101 1110]0 1110]1 111100 11110[1 111110]0 111110[1 11111100
3 0/0 0[10 011 10/0 1010 10[11 110/0 11010 11011 1110/0 111010 1110[11 11110|0
4 0/00 0[01 0[10 0[11 1000 1001 1010 10[11 110/00 110/01 110/10 110|11 1111000
5 0/00 0[01 0[10 0|110 0[111 1000 1001 10[10 10[110 10111 11000 110[01  110|10
6 000 0[01 0[100 0]101 0|110 0|111 1000 10J01 10]100 10101 10[110 10111  110]00
7 000 0]010 0011 0[100 0|101 0|110 0|111 1000 10[010 10011 10[100 10101  10|110
8 0/000 0]001 0/010 0]011 0]100 0[101 0[110 0[111 10000 10[001 10/010  10[011  10]100
9 0]000 0]001 0[010 0]011 0]100 0[101 0[110 0|1110 0|1111 10[000 10/001  10[010  10]011
10 | 0000 0]001 0[010 0]011 0]100 0[101 0]1100 0]1101 0[1110 0[1111 10000  10[001  10]010
11 | 0]000 0j001 0[010 0]011 0]100 0[1010 0]1011 0]1100 0[1101 0[1110 0|1111  10/000  10]001
12 | 0J000 0[001 0010 0]011 0]1000 0|1001 0|1010 0|1011 0|1100 0[1101 0[1110 0|1111  10]000
13 | 0/000 0]001 0[010 00110 00111 01000 01001 01010 0[1011 0[1100 0|1101 0[1110  0|1111

Table 2.10: Some Golomb Codes for m = 2 Through 13.

For a somewhat longer example, we select m = 14. This results in ¢ = 4 and
produces the 14 remainders 0 through 13. The first two (2* — 14 = 2) are coded in
¢ — 1 = 3 bits each, and the remaining 12 are coded in four bits each, ending with
11115 (and as a result starting with 01002). Thus, we have 000, 001, followed by the
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12 values 0100, 0101, 0110, 0111, ..., 1111. Table 2.11 lists several detailed examples
and Table 2.12 lists 48 codes for m = 14 and for m = 16. The former starts with two
4-bit codes, followed by sets of 14 codes each that are getting longer by one bit. The
latter is simpler because 16 is a power of 2. The Golomb codes for m = 16 consist of
sets of 16 codes each that get longer by one bit. The Golomb codes for the case where
m is a power of 2 have been developed by Robert F. Rice and are called Rice codes.
Many algorithms for lossless audio compression employ this code. A typical example is

Shorten (Section 7.9).

n 0 1 2 3
q ::Lfij 0 O 0 0
unary(q) 0 0O 0 0
r 000 001 0100 0101 ..

Table 2.11: Some Golomb Codes for m = 14.

13
0
0

m =14

n Code n Code
0 0000 24 101100
1 0001 25 101101

26 101110
2 00100 27 101111
3 00101 28 110000
4 00110 29 110001
5 00111 -
6 01000 30 1100100
7 01001 31 1100101
8 01010 32 1100110
9 01011 33 1100111
10 01100 34 1101000
11 01101 35 1101001
12 01110 36 1101010
13 01111 37 1101011
14 10000 38 1101100
15 10001 39 1101101

40 1101110
16 100100 41 1101111
17 100101 42 1110000
18 100110 43 1110001
19 100111 -
20 101000 44 11100100
21 101001 45 11100101
22 101010 46 11100110
23 101011 47 11100111

14
1
10

15
1
10

16 17
1 1
10 10

1111 000 001 0100 0101 ...

27 28 29 30
1 2 2 2

10 110 110 110

1111 000 001 0100

m = 16

n Code n Code
0 00000 24 101000
1 00001 25 101001
2 00010 26 101010
3 00011 27 101011
4 00100 28 101100
5 00101 29 101101
6 00110 30 101110
7 00111 31 101111
8 01000 -
9 01001 32 1100000
10 01010 33 1100001
11 01011 34 1100010
12 01100 35 1100011
13 01101 36 1100100
14 01110 37 1100101
15 01111 38 1100110

39 1100111
16 100000 40 1101000
17 100001 41 1101001
18 100010 42 1101010
19 100011 43 1101011
20 100100 44 1101100
21 100101 45 1101101
22 100110 46 1101110
23 100111 47 1101111

Table 2.12: The First 48 Golomb Codes for m = 14 and m = 16.

Tables 2.11 and 2.12 illustrate the effect of m on the code length. For small values
of m, the Golomb codes start short and increase quickly in length. They are appropriate
for RLE in cases where the probability p of zero is small, implying very few long runs.
For large values of m, the initial codes (for n = 1,2,...) are long, but their lengths
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increase slowly. Such codes make sense for RLE when p is large, implying that many
long runs are expected.

Decoding. The Golomb codes are designed in this special way to facilitate their
decoding. We first demonstrate the decoding for the simple case m = 16 (m is a power of
2). To decode, start at the left end of the code and count the number A of 1’s preceding
the first 0. The length of the code is A + ¢ + 1 bits (for m = 16, this is A + 5 bits).
If we denote the rightmost five bits of the code by R, then the value of the code is
16 A 4+ R. This simple decoding reflects the way the code was constructed. To encode n
with m = 16, start by dividing it by 16 to get n = 16 A + R, then write A 1’s followed
by a single zero, followed by the 4-bit representation of R.

For m values that are not powers of 2, decoding is slightly more involved. Assuming
again that a code begins with A 1’s, start by removing them and the zero immediately
following them. Denote the ¢ — 1 bits that follow by R. If R < 2° — m, then the total
length of the code is A+ 1+ (¢ —1) (the A 1’s, the zero following them, and the ¢ — 1
bits that follow) and its value is mx A + R. If R > 2¢ — m, then the total length of the
code is A+ 1+ ¢ and its value is mx A + R’ — (2° — m), where R’ is the c-bit integer
consisting of R and the bit that follows R.

An example is the code 0001zzx, for m = 14. There are no leading 1’s, so A is
0. After removing the leading zero, the ¢ — 1 = 3 bits that follow are R = 001. Since
R < 2° —m = 2, we conclude that the length of the code is 04+ 1+ (4 — 1) = 4 and
its value is 001. Similarly, the code 00100zzz for the same m = 14 has A = 0 and
R = 0105 = 2. In this case, R > 2° — m = 2, so the length of the code is 0+ 1+ ¢ =5,
the value of R’ is 0100, = 4, and the value of the code is 14 x 0 +4 — 2 = 2.

Sections 4.9.1 and 4.22 illustrate the use of the Golomb code for lossless image
compression.

It is now clear that the best value for m depends on p, and it can be shown that
this value is the integer closest to —1/log, p or, equivalently, the value that satisfies

P 1)2. (2.2)

It can also be shown that in the case of a sequence of run lengths, this integer is the
median of the run lengths. Thus, for p = 0.5, m should be —1/log, 0.5 = 1. For p = 0.7,
m should be 2, because —1/1og, 0.7 ~ 1.94, and for p = 36/37, m should be 25, because
—1/10g4(36/37) ~ 25.29.

It should also be mentioned that Gallager and van Voorhis [Gallager and van
Voorhis 75] have refined and extended Equation (2.2) into the more precise relation

pm +pm+1 <1l< pm _’_pm—l. (23)

They proved that the Golomb code is the best prefix code when m is selected by their
inequality. We first show that for a given p, inequality (2.3) has only one solution m.
We manipulate this inequality in four steps as follows:

p"(1+p) <1<p™1(1+4p),

m 1 <m71
P st oo




68 2. Statistical Methods

1
m log—— >m —1,

>
“logp T 1+p
> log(1 +p) o

m—1
logp

)

from which it is clear that the unique value of m is

m= Pgﬂ”fﬂ . (2.4)

log, p

Three examples are presented here to illustrate the performance of the Golomb code
in compressing run lengths. The first example is the binary string (2.1), which has 41
zeros and 18 ones. The probability of a zero is therefore 41/(41 + 18) = 0.7, yielding
m = [—1log1.7/1og0.7] = [1.487] = 2. The sequence of run lengths 5, 2, 0, 3, 1, 6, 0, 0,
1,3,5,3,2,3,0, 1, 4, and 2 can therefore be encoded with the Golomb codes for m = 2
into the string of 18 codes

1101]100]00/101]01|11100/00]00]01|101]1101|101/100|101/00|01]|1100|100.

The result is a 52-bit string that compresses the original 59 bits. There is almost no
compression because p isn’t large. Notice that string (2.1) has four runs of length 0
(creating three runs of 1’s) and three runs of length 1. The next example is the 94-bit
string
00000000001000000000100000001000000000001000000001000000000000100000000100000001000000000010000000,

which is sparser and therefore compresses better. It consists of 85 zeros and 9 ones, so
p = 85/(85+9) = 0.9. The best value of m is therefore m = [—1log(1.9)/1og(0.9)] =
[6.09] = 7. The 10 runs of zeros have lengths 10, 9, 7, 11, 8, 12, 8, 7, 10, and 7. When
encoded by the Golomb codes for m = 7, the run lengths become the 47-bit string

10100{10011|1000|10101|10010|10110|10010{1000|10100|1000,

resulting in a compression factor of 94/47 = 2.

The third, extreme, example is a really sparse binary string that consists of, say, 10°
bits, of which only 100 are ones (see Section 8.5 for other methods to compress sparse
strings). The probability of zero is p = 10°/(10° 4 10%) = 0.9999, implying m = 6932.
There are 101 runs, each about 10* zeros long. The Golomb code of 10* for m = 6932
is 14 bits long, so the 101 runs can be compressed to 1414 bits, yielding the impressive
compression factor of 707!

In summary, given a binary string, we can compress it with RLE in the following
steps: (1) count the number of zeros and ones, (2) compute the probability p of a zero,
(3) use Equation (2.4) to compute m, (4) construct the family of Golomb codes for m,
and (5) for each run-length of n zeros, write the Golomb code of n on the compressed
stream.

In order for the run lengths to be meaningful, p should be large. Small values of p,
such as 0.1, result in a string with more ones than zeros and thus in many short runs of
zeros and long runs of ones. In such a case, it is possible to use RLE to compress the
runs of ones. In general, we can talk about a binary string whose elements are r and s
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(for run and stop). For r, we should select the more common element, but it has to be
very common (the distribution of r and s should be skewed) for RLE to produce good
compression. Values of p around 0.5 result in runs of both zeros and ones, so regardless
of which bit is selected for the r element, there will be many runs of length zero. For
example, the string 00011100110000111101000111 has the following run lengths of zeros
3,0,0,2,0,4,0,0,0, 1, 3, 0, 0 and similar run lengths of ones 0, 0, 3, 0, 2, 0, 0, 0, 4,
1, 0, 0, 3. In such a case, RLE is not a good choice for compression and other methods
should be considered.

There is also the common case where p is unknown and cannot be computed (or even
estimated) in advance, because the string is very long or because it has to be compressed
in real time while it arrives from its source. In such a case, an adaptive algorithm that
varies m according to the input-so-far is the best choice. Such an algorithm, called
Goladap [Langdon 83al, is described here.

Goladap is based on the observation that the best value of m is given by p™ = 1/2.
It also employs the fact that the Golomb code of run length n starts with the quotient
(expressed in unary) n + m and ends with the corresponding remainder. When the
encoder starts reading the zeros of a run, it doesn’t know the length n of the run. It
can therefore increment a counter for each zero read, and when the counter reaches m,
append a 1 to the unary code, clear the counter, and continue reading zeros of the run.
When the run ends (a 1 is read from the input), the encoder appends a zero to complete
the unary code, then appends the value of the counter (because this is the remainder).
The case m = 2F is especially simple because a k-bit counter can count from 0 to k — 1,
then overflow and reset itself. If m is selected as the median, then half the runs should
be shorter than m and not cause counter overflow, while the other half should cause
overflow(s).

The adaptive part of Goladap varies m (while keeping it a power of 2) according to
the counter overflow. If there was no counter overflow during the encoding of a run, then
k is decremented by 1 (which halves m) otherwise it is incremented by 1 (which doubles
m) each time the counter overflows. The new value of m is used to encode the next run
of zeros, so the decoder can update m in lockstep with the encoder. The justification
for this method is that a long run (several counter overflows during the encoding of a
run) is an indication of many zeros (a large p) and therefore a skewed distribution of
zeros and ones, so a large m is appropriate. A short run (no counter overflow) indicates
the opposite, so a smaller m should perform better.

Here is how the Goladap encoder works. It employs two variables K (coding) and
C (count). Both are initialized to zero. For each 0 read from the input, C'is incremented
(but only if K is positive). When C' mod 2K becomes zero, a 1 is appended to the unary
code, C is cleared, and K is incremented by 1 (unless it is already at its maximum).
When a 1 is read from the input (signalling the end of the current run), a 0 is appended
to the code-so-far, terminating the unary part. This is followed by the least-significant
K bits of C' (the remainder). The count C' is cleared and K is decremented by 1 (unless
it is already 0). Here is an encoding example. Imagine a run of nine zeros followed by
a 1. Both C' and K are initialized to 0.

1. The first zero input appends a 1 to the (so far empty) unary code and increments
K to 1.
2. The second zero increments C' to 1.
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3. The third zero increments C' to 2. Since K = 1, another 1 is appended to the
unary code. K is incremented to 2 and C' is cleared.

4. The next four zeros (fourth through seventh) increment C' from 0 to 4, at which
point another 1 is appended to the unary code, K is incremented to 3, and C' is cleared.

5. The next two zeros (eighth and ninth) increment C' to 2.

6. (The unary code is now 111.) The 1 following the run is read. A 0 is appended
to the unary code, followed by the value of C' in K bits, i.e., 010. The complete Golomb
code is 1110010.

The Goladap decoder reads the leading 1s of the unary code. For each 1, it emits
zeros and increments K. When the 0 that terminates the unary code is reached, the
decoder reads the next K bits, converts them to an integer, and emits that number of
zeros, followed by a single 1. If K isn’t already zero, it is decremented.

Another approach to adaptive RLE is to use the binary string input so far to
estimate p and from it to estimate m, and then use the new value of m to encode the
next run length (not the current one because the decoder cannot mimic this). Imagine
that three runs of 10, 15, and 21 zeros have been input so far, and the first two have
already been compressed. The current run of 21 zeros is first compressed with the
current value of m, then a new p is computed as (10 + 15 + 21)/[(10 4+ 15 + 21) + 3]
and is used to update m either from —1/log, p or from Equation (2.4). (The 3 is the
number of 1s input so far, one for each run.) The new m is used to compress the next
run. The algorithm accumulates the lengths of the runs in variable L and the number
of runs in N. Figure 2.13 is a simple pseudocode listing of this method. (A practical
implementation should halve the values of L and N from time to time, to prevent them
from overflowing.)

2K

L =0; % initialize

N =0;

m=1; % or ask user for m

% main loop

for each run of r zeros do
construct Golomb code for 7 using current m.
write it on compressed stream.

L=L+r: % update L, N, and m
N=N+1;
p=L/(L+ N);
m = |—1/logyp+0.5];
endfor;

Figure 2.13: Simple Adaptive Golomb RLE Encoding.

The author is indebted to Cosmin Truta for pointing out the errors in the previous
version of this section and for reviewing the current version.

In addition to the codes, Solomon W. Golomb has his “own” Golomb constant:
0.624329988543550870992936383100837244179642620180529286.
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2.6 The Kraft-MacMillan Inequality

This inequality is related to unambiguous variable-size codes. Its first part states that
given an unambiguous variable-size code, with n codes of sizes L;, then

Yoot (2.5)

The second part states the opposite. Given a set of n positive integers (L1, La, ..., Ly)
that satisfy Equation (2.5), there exists an unambiguous variable-size code such that
the L; are the sizes of its individual codes. Together, both parts say that a code is
unambiguous if and only if it satisfies relation (2.5).

This inequality can be related to the entropy by observing that the lengths L; can
always be written as L; = —log, P; + E;, where E; is simply the amount by which L; is
greater than the entropy (the extra length of code ).

This implies that

27Li — 2(10g2 Pz‘*Ei) — 210g2 P1/2E1 = PZ/QE1

In the special case where all the extra lengths are the same (E; = F), the Kraft inequality
says that
- E _ Zﬁ=1 b _ 1 E
1> P2 =S =y =22 1=E>0
i=1

An unambiguous code has non-negative extra length, meaning its length is greater than
or equal to the length determined by its entropy.

Here is a simple example of the use of this inequality. Consider the simple case of n
equal-length binary codes. The size of each code is L; = log, n, and the Kraft-MacMillan

sum is
doohi= gl < Z% =1.
1 1

The inequality is satisfied, so such a code is unambiguous (uniquely decodable).

Statistics show that there are more women in the
world than anything else except insects.

—@Glenn Ford as Johnny Farrell in Gilda (1946)

A more interesting example is the case of n codes where the first one is compressed
and the second one expanded. We set L; = loggn —a, Ly = logyn + e, and Ly =
Ly =---= L, =logyn, where a and e are positive. We show that e > a, which means
that compressing a symbol by a factor a requires expanding another symbol by a larger
factor. We can benefit from this only if the probability of the compressed symbol is
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greater than that of the expanded symbol.

i 2—L,i _ 2—L1 + 2—L2 + i2—log2n
1 3

n
_ 2—log2 n+a + 2—log2 n—e § :2—10g2n —_ 9% 2—10g2n
1

ga  g-e 2
= +1- 2
n

The Kraft-MacMillan inequality requires that

2¢  27°¢ 2 2¢ 27 2
—+ +1—-—-<1, or —+ ——<0,
n n n n n

or 27¢ < 2—2% implying —e < log,(2 — 2%), or e > —log,(2 — 2).

The inequality above implies a < 1 (otherwise, 2 — 2% is negative) but a is also
positive (since we assumed compression of symbol 1). The possible range of values of
a is therefore (0, 1], and in this range e is greater than a, proving the statement above.
(It is easy to see that a =1 — e > —log, 0 = 00, and a = 0.1 — e > —log,(2 — 2°1) ~
0.10745.)

It can be shown that this is just a special case of a general result that says; If you
have an alphabet of n symbols, and you compress some of them by a certain factor, then
the others must be expanded by a greater factor.

2.7 Shannon-Fano Coding

Shannon-Fano coding, named after Claude Shannon and Robert Fano, was the first
algorithm to construct a set of the best variable-size codes. We start with a set of n
symbols with known probabilities (or frequencies) of occurrence. The symbols are first
arranged in descending order of their probabilities. The set of symbols is then divided
into two subsets that have the same (or almost the same) probabilities. All symbols in
one subset get assigned codes that start with a 0, while the codes of the symbols in the
other subset start with a 1. Each subset is then recursively divided into two subsubsets
of roughly equal probabilities, and the second bit of all the codes is determined in a
similar way. When a subset contains just two symbols, their codes are distinguished
by adding one more bit to each. The process continues until no more subsets remain.
Table 2.14 illustrates the Shannon-Fano algorithm for a seven-symbol alphabet. Notice
that the symbols themselves are not shown, only their probabilities.

The first step splits the set of seven symbols into two subsets, one with two symbols
and a total probability of 0.45 and the other with the remaining five symbols and a
total probability of 0.55. The two symbols in the first subset are assigned codes that
start with 1, so their final codes are 11 and 10. The second subset is divided, in the
second step, into two symbols (with total probability 0.3 and codes that start with 01)
and three symbols (with total probability 0.25 and codes that start with 00). Step three
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Prob. Steps Final
1. 0.25 1 1 :11
2. 0.20 1 0 :10
3. 0.15 0 1 1 :011
4. 0.15 0 1 0 :010
5. 0.10 0 0 1 :001
6. 0.10 0 0 0 1 :0001
7. 0.05 0 0 0 0 :0000

Table 2.14: Shannon-Fano Example.

divides the last three symbols into 1 (with probability 0.1 and code 001) and 2 (with
total probability 0.15 and codes that start with 000).

The average size of this code is 0.25 x 2+ 0.20 x 24+ 0.15 x 34+ 0.15 x 34+ 0.10 x 3+
0.10 x 4 + 0.05 x 4 = 2.7 bits/symbol. This is a good result because the entropy (the
smallest number of bits needed, on average, to represent each symbol) is

- (0.25 log, 0.25 + 0.20log, 0.20 + 0.151log, 0.15 + 0.15log, 0.15
4 0.1010g, 0.10 + 0.101og, 0.10 + 0.05 log, 0.05) ~ 2.67.

Exercise 2.11: Repeat the calculation above but place the first split between the third
and fourth symbols. Calculate the average size of the code and show that it is greater
than 2.67 bits/symbol.

The code in the table in the answer to Exercise 2.11 has longer average size because
the splits, in this case, were not as good as those of Table 2.14. This suggests that the
Shannon-Fano method produces better code when the splits are better, i.e., when the
two subsets in every split have very close total probabilities. Carrying this argument to
its limit suggests that perfect splits yield the best code. Table 2.15 illustrates such a
case. The two subsets in every split have identical total probabilities, yielding a code
with the minimum average size (zero redundancy). Its average size is 0.25 x 2+ 0.25 x
2+40.125 x 34 0.125 x 34 0.125 x 34 0.125 x 3 = 2.5 bits/symbols, which is identical
to its entropy. This means that it is the theoretical minimum average size.

Prob. Steps Final
1. 0.25 1 1 :11
2. 0.25 1 0 :10
3.0125 0 1 1 :011
4. 0125 0 1 0 :010
5. 0125 0 0 1 :001
6. 0125 0 0 O :000

Table 2.15: Shannon-Fano Balanced Example.
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The conclusion is that this method produces the best results when the symbols have
probabilities of occurrence that are (negative) powers of 2.

Exercise 2.12: Compute the entropy of the codes of Table 2.15.

The Shannon-Fano method is easy to implement but the code it produces is gener-
ally not as good as that produced by the Huffman method (Section 2.8).

2.8 Huffman Coding

Huffman coding is a popular method for data compression. It serves as the basis for
several popular programs run on various platforms. Some programs use just the Huffman
method, while others use it as one step in a multistep compression process. The Huffman
method [Huffman 52] is somewhat similar to the Shannon-Fano method. It generally
produces better codes, and like the Shannon-Fano method, it produces the best code
when the probabilities of the symbols are negative powers of 2. The main difference
between the two methods is that Shannon-Fano constructs its codes top to bottom (from
the leftmost to the rightmost bits), while Huffman constructs a code tree from the bottom
up (builds the codes from right to left). Since its development, in 1952, by D. Huffman,
this method has been the subject of intensive research into data compression.

The algorithm starts by building a list of all the alphabet symbols in descending
order of their probabilities. It then constructs a tree, with a symbol at every leaf, from
the bottom up. This is done in steps, where at each step the two symbols with smallest
probabilities are selected, added to the top of the partial tree, deleted from the list, and
replaced with an auxiliary symbol representing the two original symbols. When the list
is reduced to just one auxiliary symbol (representing the entire alphabet), the tree is
complete. The tree is then traversed to determine the codes of the symbols.

This process is best illustrated by an example. Given five symbols with probabilities
as shown in Figure 2.16a, they are paired in the following order:

1. a4 is combined with a5 and both are replaced by the combined symbol a5, whose
probability is 0.2.

2. There are now four symbols left, a;, with probability 0.4, and a9, a3, and a5, with
probabilities 0.2 each. We arbitrarily select ag and ay45, combine them, and replace them
with the auxiliary symbol as45, whose probability is 0.4.

3. Three symbols are now left, a1, as, and asss, with probabilities 0.4, 0.2, and 0.4,
respectively. We arbitrarily select as and asys, combine them, and replace them with
the auxiliary symbol as345, whose probability is 0.6.

4. Finally, we combine the two remaining symbols, a; and as345, and replace them with
a12345 With probability 1.

The tree is now complete. It is shown in Figure 2.16a “lying on its side” with its
root on the right and its five leaves on the left. To assign the codes, we arbitrarily assign
a bit of 1 to the top edge, and a bit of 0 to the bottom edge, of every pair of edges. This
results in the codes 0, 10, 111, 1101, and 1100. The assignments of bits to the edges is
arbitrary.

The average size of this codeis 0.4 x14+0.2x2402x34+0.1x44+0.1x4=2.2
bits/symbol, but even more importantly, the Huffman code is not unique. Some of
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the steps above were chosen arbitrarily, since there were more than two symbols with
smallest probabilities. Figure 2.16b shows how the same five symbols can be combined
differently to obtain a different Huffman code (11, 01, 00, 101, and 100). The average
size of this code is 0.4 x 2+ 0.2 x 24+ 0.2 x 2+ 0.1 x 34 0.1 x 3 = 2.2 bits/symbol, the
same as the previous code.

0 [ 10
ai ar 0.4 0.6
0.4 a12345 1 a145 ¢
1 1
a2345 }Jl 1 0  —
a2 0.2 o 06 az 0.2 0 1.0
a23 ¢—|—57
1
as 0.2 as 0.2 0
azas 04 L
as 0.1 —— 0 as 0.1
a 0.2
a45 955 45
as 0.1 0 as 0.1 0

Figure 2.16: Huffman Codes.

o Exercise 2.13: Given the eight symbols A, B, C, D, E, F, G, and H with probabilities
1/30, 1/30, 1/30, 2/30, 3/30, 5/30, 5/30, and 12/30, draw three different Huffman trees
with heights 5 and 6 for these symbols and calculate the average code size for each tree.

o Exercise 2.14: Figure Ans.7d shows another Huffman tree, with height 4, for the eight
symbols introduced in Exercise 2.13. Explain why this tree is wrong.

It turns out that the arbitrary decisions made in constructing the Huffman tree
affect the individual codes but not the average size of the code. Still, we have to answer
the obvious question, which of the different Huffman codes for a given set of symbols
is best? The answer, while not obvious, is simple: The best code is the one with the
smallest variance. The variance of a code measures how much the sizes of the individual
codes deviate from the average size (see page 427 for the definition of variance). The
variance of code 2.16a is

0.4(1 —2.2)2+0.2(2 - 2.2)2 4 0.2(3 — 2.2)> +0.1(4 — 2.2)% + 0.1(4 — 2.2)® = 1.36,
while the variance of code 2.16b is

0.4(2 —22)% +0.2(2 —2.2)> +0.2(2 — 2.2)? + 0.1(3 — 2.2)% + 0.1(3 — 2.2)® = 0.16.
Code 2.16Db is therefore preferable (see below). A careful look at the two trees shows

how to select the one we want. In the tree of Figure 2.16a, symbol a5 is combined with
a3, whereas in the tree of 2.16b it is combined with a;. The rule is: When there are
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more than two smallest-probability nodes, select the ones that are lowest and highest in
the tree and combine them. This will combine symbols of low probability with ones of
high probability, thereby reducing the total variance of the code.

If the encoder simply writes the compressed stream on a file, the variance of the
code makes no difference. A small-variance Huffman code is preferable only in cases
where the encoder transmits the compressed stream, as it is being generated, over a
communications line. In such a case, a code with large variance causes the encoder to
generate bits at a rate that varies all the time. Since the bits have to be transmitted at a
constant rate, the encoder has to use a buffer. Bits of the compressed stream are entered
into the buffer as they are being generated and are moved out of it at a constant rate,
to be transmitted. It is easy to see intuitively that a Huffman code with zero variance
will enter bits into the buffer at a constant rate, so only a short buffer will be needed.
The larger the code variance, the more variable is the rate at which bits enter the buffer,
requiring the encoder to use a larger buffer.

The following claim is sometimes found in the literature:

It can be shown that the size of the Huffman code of a symbol

a; with probability P; is always less than or equal to [—log, P;].
Even though it is correct in many cases, this claim is not true in general. It seems
to be a wrong corollary drawn by some authors from the Kraft-MacMillan inequality,
Equation (2.5). The author is indebted to Guy Blelloch for pointing this out and also
for the example of Table 2.17.

Exercise 2.15: Find an example where the size of the Huffman code of a symbol a; is
greater than [—log, P;].

P, Code —logy,P; [—logyP;]

.01 000 6.644 7
*.30 001 1.737 2
.34 01 1.556 2
.35 1 1.515 2

Table 2.17: A Huffman Code Example.

Exercise 2.16: It seems that the size of a code must also depend on the number n of
symbols (the size of the alphabet). A small alphabet requires just a few codes, so they
can all be short; a large alphabet requires many codes, so some must be long. This being
so, how can we say that the size of the code of symbol a; depends just on its probability
P?

Figure 2.18 shows a Huffman code for the 26 letters.
As a self-exercise, the reader may calculate the average size, entropy, and variance
of this code.

Exercise 2.17: Discuss the Huffman codes for equal probabilities.

Exercise 2.17 shows that symbols with equal probabilities don’t compress under the
Huffman method. This is understandable, since strings of such symbols normally make
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000 E .1300 ——— ¢
0010 T .0900 30
0011 A 0800 |1
0100 O .0800 080
0101 N .0700 B
0110 R, .0650 — 28
0111 1.0650

10000 H 0600 0
10001 S .0600 _ -
10010 D .0400 195 | ¢

10011 L .0350 I 1
10100 C .0300 — 305 | ¢
10101 U .0300 1

10110 M .0300 11
10111 F .0200 I

11000 P .0200

11001 Y .0200 B 420
11010 B .0150 — | 070 | ¢

11011 W .0150 1
11100 G .0150 115
11101 V .0100 j—ms 1

111100 J .0050

111101 K .0050 010 045
111110 X .0050 ——— .020
1111110 Q .0025
010
1111111 Z .0025 }_005

Figure 2.18: A Huffman Code for the 26-Letter Alphabet.

random text, and random text does not compress. There may be special cases where
strings of symbols with equal probabilities are not random and can be compressed. A
good example is the string aja; ...a1a2as...aza3a3 ... in which each symbol appears
in a long run. This string can be compressed with RLE but not with Huffman codes.
Notice that the Huffman method cannot be applied to a two-symbol alphabet. In
such an alphabet, one symbol can be assigned the code 0 and the other code 1. The
Huffman method cannot assign to any symbol a code shorter than one bit, so it cannot
improve on this simple code. If the original data (the source) consists of individual
bits, such as in the case of a bi-level (monochromatic) image, it is possible to combine
several bits (perhaps four or eight) into a new symbol and pretend that the alphabet
consists of these (16 or 256) symbols. The problem with this approach is that the original
binary data may have certain statistical correlations between the bits, and some of these
correlations would be lost when the bits are combined into symbols. When a typical
bi-level image (a painting or a diagram) is digitized by scan lines, a pixel is more likely to
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be followed by an identical pixel than by the opposite one. We therefore have a file that
can start with either a 0 or a 1 (each has 0.5 probability of being the first bit). A zero is
more likely to be followed by another 0 and a 1 by another 1. Figure 2.19 is a finite-state
machine illustrating this situation. If these bits are combined into, say, groups of eight,
the bits inside a group will still be correlated, but the groups themselves will not be
correlated by the original pixel probabilities. If the input stream contains, e.g., the two
adjacent groups 00011100 and 00001110, they will be encoded independently, ignoring
the correlation between the last 0 of the first group and the first 0 of the next group.
Selecting larger groups improves this situation but increases the number of groups, which
implies more storage for the code table and longer time to calculate the table.

Start

0,50% 1,50%

1,33%

A D

0,67%

Figure 2.19: A Finite-State Machine.

Exercise 2.18: How does the number of groups increase when the group size increases
from s bits to s + n bits?

A more complex approach to image compression by Huffman coding is to create
several complete sets of Huffman codes. If the group size is, e.g., eight bits, then several
sets of 256 codes are generated. When a symbol S is to be encoded, one of the sets is
selected, and S is encoded using its code in that set. The choice of set depends on the
symbol preceding S.

Exercise 2.19: Imagine an image with 8-bit pixels where half the pixels have values 127
and the other half have values 128. Analyze the performance of RLE on the individual
bitplanes of such an image, and compare it with what can be achieved with Huffman
coding.

2.8.1 Huffman Decoding

Before starting the compression of a data stream, the compressor (encoder) has to de-
termine the codes. It does that based on the probabilities (or frequencies of occurrence)
of the symbols. The probabilities or frequencies have to be written, as side information,
on the compressed stream, so that any Huffman decompressor (decoder) will be able to
decompress the stream. This is easy, since the frequencies are integers and the proba-
bilities can be written as scaled integers. It normally adds just a few hundred bytes to
the compressed stream. It is also possible to write the variable-size codes themselves on
the stream, but this may be awkward, because the codes have different sizes. It is also
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possible to write the Huffman tree on the stream, but this may require more space than
just the frequencies.

In any case, the decoder must know what is at the start of the stream, read it, and
construct the Huffman tree for the alphabet. Only then can it read and decode the rest
of the stream. The algorithm for decoding is simple. Start at the root and read the first
bit off the compressed stream. If it is zero, follow the bottom edge of the tree; if it is
one, follow the top edge. Read the next bit and move another edge toward the leaves
of the tree. When the decoder gets to a leaf, it finds the original, uncompressed code
of the symbol (normally its ASCII code), and that code is emitted by the decoder. The
process starts again at the root with the next bit.

This process is illustrated for the five-symbol alphabet of Figure 2.20. The four-
symbol input string a4asasa; is encoded into 1001100111. The decoder starts at the
root, reads the first bit 1, and goes up. The second bit 0 sends it down, as does the
third bit. This brings the decoder to leaf a4, which it emits. It again returns to the
root, reads 110, moves up, up, and down, to reach leaf as, and so on.

17

e 1

3 — 01
4 0
5

Figure 2.20: Huffman Codes for Equal Probabilities.

Truth is stranger than fiction, but this is because fiction is obliged to stick to
probability; truth is not.

—Anonymous

2.8.2 Average Code Size

Figure 2.23a shows a set of five symbols with their probabilities and a typical Huffman
tree. Symbol A appears 55% of the time and is assigned a 1-bit code, so it contributes
0.55-1 bits to the average code size. Symbol E appears only 2% of the time and is
assigned a 4-bit Huffman code, so it contributes 0.02-4 = 0.08 bits to the code size. The
average code size is therefore calculated to be

0.55-1+0.25-24+0.15-34+0.03-4+0.02 -4 = 1.7 bits per symbol.
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Surprisingly, the same result is obtained by adding the values of the four internal nodes
of the Huffman code-tree 0.05 + 0.2 + 0.45 + 1 = 1.7. This provides a way to calculate
the average code size of a set of Huffman codes without any multiplications. Simply add
the values of all the internal nodes of the tree. Table 2.21 illustrates why this works.

0.05 = =0.02+0.03+4---
a =0.054+...=0024+0.03+---
a9 =a +...=0024+003+---

05 = .024-.03 )
20 =.05+ .15 =.02+ .03+ .15 : =
45 =.20+ .25 =.02+ .03+ .15+ .25 ag—2 =aq—3+ ...=0.024+0.03 +---
1.0 = .45+ .55 =.02+ .03+ .15+ .25+ .55 1.0 =aqg—2+...=0.0240.034---
Table 2.21: Composition of Nodes. Table 2.22: Composition of Nodes.

A 0.55

1
B 0.25
0.45
C0.15
0.2
D 0.03
] 0.05
E 0.02
(a)

[oW
Y

(b)

Figure 2.23: Huffman Code-Trees.

(Internal nodes are shown in italics in this table.) The left column consists of the values
of all the internal nodes. The right columns show how each internal node is the sum of
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some of the leaf nodes. Summing the values in the left column yields 1.7, and summing
the other columns shows that this 1.7 is the sum of the four values 0.02, the four values
0.03, the three values 0.15, the two values 0.25, and the single value 0.55.

This argument can be extended to the general case. It is easy to show that, in a
Huffman-like tree (a tree where each node is the sum of its children), the weighted sum
of the leaves, where the weights are the distances of the leaves from the root, equals
the sum of the internal nodes. (This property has been communicated to the author by
John M. Motil.)

Figure 2.23b shows such a tree, where we assume that the two leaves 0.02 and 0.03
have d-bit Huffman codes. Inside the tree, these leaves become the children of internal
node 0.05, which, in turn, is connected to the root by means of the d — 2 internal nodes
a1 through a4_o. Table 2.22 has d rows and shows that the two values 0.02 and 0.03
are included in the various internal nodes exactly d times. Adding the values of all the
internal nodes produces a sum that includes the contributions 0.02 - d + 0.03 - d from
the two leaves. Since these leaves are arbitrary, it is clear that this sum includes similar
contributions from all the other leaves, so this sum is the average code size. Since this
sum also equals the sum of the left column, which is the sum of the internal nodes, it is
clear that the sum of the internal nodes equals the average code size.

Notice that this proof does not assume that the tree is binary. The property illus-
trated here exists for any tree where a node contains the sum of its children.

2.8.3 Number of Codes

Since the Huffman code is not unique, the natural question is: How many different codes
are there? Figure 2.24a shows a Huffman code-tree for six symbols, from which we can
answer this question in two different ways.

Answer 1. The tree of 2.24a has five interior nodes, and in general, a Huffman code-
tree for n symbols has n— 1 interior nodes. Each interior node has two edges coming out
of it, labeled 0 and 1. Swapping the two labels produces a different Huffman code-tree,
so the total number of different Huffman code-trees is 2”1 (in our example, 2° or 32).
The tree of Figure 2.24b, for example, shows the result of swapping the labels of the two
edges of the root. Table 2.25a.,b lists the codes generated by the two trees.

0 0
111 — 111 g
1 1
9 12 — 9 12 —
0 0 0 1
3 .13 0 3 .13 0 000 100 000
1T - 1 - 001 101 001
S o 100 000 010
5 .24 1 5 .24 0 101 001 011
1 1 01 11 10
6 .26 6 .26 0ol 1

(a) (b) (a) (b) (c)

Figure 2.24: Two Huffman Code-Trees. Table 2.25.
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Answer 2. The six codes of Table 2.25a can be divided into the four classes 00z,
10y, 01, and 11, where = and y are 1-bit each. It is possible to create different Huffman
codes by changing the first two bits of each class. Since there are four classes, this is
the same as creating all the permutations of four objects, something that can be done
in 4! = 24 ways. In each of the 24 permutations it is also possible to change the values
of z and y in four different ways (since they are bits) so the total number of different
Huffman codes in our six-symbol example is 24 x 4 = 96.

The two answers are different because they count different things. Answer 1 counts
the number of different Huffman code-trees, while answer 2 counts the number of differ-
ent Huffman codes. It turns out that our example can generate 32 different code-trees
but only 94 different codes instead of 96. This shows that there are Huffman codes that
cannot be generated by the Huffman method! Table 2.25c¢ shows such an example. A
look at the trees of Figure 2.24 should convince the reader that the codes of symbols 5
and 6 must start with different bits, but in the code of Table 2.25¢ they both start with
1. This code is therefore impossible to generate by any relabeling of the nodes of the
trees of Figure 2.24.

2.8.4 Ternary Huffman Codes

The Huffman code is not unique. Moreover, it does not have to be binary! The Huffman
method can easily be applied to codes based on other number systems. Figure 2.26a
shows a Huffman code tree for five symbols with probabilities 0.15, 0.15, 0.2, 0.25, and
0.25. The average code size is

2x0.25 4+ 3%0.15 4+ 3x0.15 + 2x0.20 4+ 2% 0.25 = 2.3 bits/symbol.

Figure 2.26b shows a ternary Huffman code tree for the same five symbols. The tree
is constructed by selecting, at each step, three symbols with the smallest probabilities
and merging them into one parent symbol, with the combined probability. The average
code size of this tree is

2x0.154+2x0.15 4 2x0.20 + 1x0.25 + 1x0.25 = 1.5 trits/symbol.

Notice that the ternary codes use the digits 0, 1, and 2.

Exercise 2.20: Given seven symbols with probabilities .02, .03, .04, .04, .12, .26, and
.49, we construct binary and ternary Huffman code-trees for them and calculate the
average code size in each case.

2.8.5 Height Of A Huffman Tree

The height of the code-tree generated by the Huffman algorithm may sometimes be
important because the height is also the length of the longest code in the tree. The
Deflate method (Section 3.23), for example, limits the lengths of certain Huffman codes
to just three bits.

It is easy to see that the shortest Huffman tree is created when the symbols have
equal probabilities. If the symbols are denoted by A, B, C, and so on, then the algorithm
combines pairs of symbols, such A and B, C and D, in the lowest level, and the rest of the
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1.0
1.0
A /l\
9% .30 45 /'70\'25 25
15 15 2 .95 15 15 .20

1.0
.49 .5
26 1.0

1

1
.25
3 12 . .

05 08 N4 12
02 03 04 .04 .02 .03 .04

(c) (d)

Figure 2.26: Binary and Ternary Huffman Code-Trees.

tree consists of interior nodes as shown in Figure 2.27a. The tree is balanced or close
to balanced and its height is [log, n]. In the special case where the number of symbols
n is a power of 2, the height is exactly log, n. In order to generate the tallest tree, we
need to assign probabilities to the symbols such that each step in the Huffman method
will increase the height of the tree by 1. Recall that each step in the Huffman algorithm
combines two symbols. Thus, the tallest tree is obtained when the first step combines
two of the n symbols and each subsequent step combines the result of its predecessor
with one of the remaining symbols (Figure 2.27b). The height of the complete tree is
therefore n — 1, and it is referred to as a lopsided or unbalanced tree.

It is easy to see what symbol probabilities result in such a tree. Denote the two
smallest probabilities by a and b. They are combined in the first step to form a node
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whose probability is a + b. The second step will combine this node with an original
symbol if one of the symbols has probability a + b (or smaller) and all the remaining
symbols have greater probabilities. Thus, after the second step, the root of the tree
has probability a + b + (a + b) and the third step will combine this root with one of
the remaining symbols if its probability is a + b + (a + b) and the probabilities of the
remaining n — 4 symbols are greater. It does not take much to realize that the symbols
have to have probabilities py = a, p2 = b, p3 = a+b = p1 +pa, ps = b+ (a+b) = pa+p3,
ps = (@ +b)+ (a+ 2b) = p3 + pg, p6 = (a + 2b) + (2a + 3b) = ps + ps, and so on
(Figure 2.27c). These probabilities form a Fibonacci sequence whose first two elements
are a and b. As an example, we select a = 5 and b = 2 and generate the 5-number
Fibonacci sequence 5, 2, 7, 9, and 16. These five numbers add up to 39, so dividing
them by 39 produces the five probabilities 5/39, 2/39, 7/39, 9/39, and 15/39. The
Huffman tree generated by them has a maximal height (which is 4).

/\ 5a+é)>\
/\ 010/\ 3a42ri>%)\
SN DN N

001 010 011 100 10 111 11110 11111 a b

(a) (b) ()

Figure 2.27: Shortest and Tallest Huffman Trees.

In principle, symbols in a set can have any probabilities, but in practice, the proba-
bilities of symbols in an input file are computed by counting the number of occurrences
of each symbol. Imagine a text file where only the nine symbols A through I appear.
In order for such a file to produce the tallest Huffman tree, where the codes will have
lengths from 1 to 8 bits, the frequencies of occurrence of the nine symbols have to form a
Fibonacci sequence of probabilities. This happens when the frequencies of the symbols
are 1, 1, 2, 3, 5, 8, 13, 21, and 34 (or integer multiples of these). The sum of these
frequencies is 88, so our file has to be at least that long in order for a symbol to have
8-bit Huffman codes. Similarly, if we want to limit the sizes of the Huffman codes of a
set of n symbols to 16 bits, we need to count frequencies of at least 4180 symbols. To
limit the code sizes to 32 bits, the minimum data size is 9,227,464 symbols.

If a set of symbols happens to have the Fibonacci probabilities and therefore results
in a maximal-height Huffman tree with codes that are too long, the tree can be reshaped
(and the maximum code length shortened) by slightly modifying the symbol probabil-
ities, so they are not much different from the original, but do not form a Fibonacci
sequence.

2.8.6 Canonical Huffman Codes

The code of Table 2.25¢ has a simple interpretation. It assigns the first four symbols
the 3-bit codes 0, 1, 2, 3, and the last two symbols the 2-bit codes 2 and 3. This is an
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example of a canonical Huffman code. The word “canonical” means that this particular
code has been selected from among the several (or even many) possible Huffman codes
because its properties make it easy and fast to use.

Table 2.28 shows a slightly bigger example of a canonical Huffman code. Imagine
a set of 16 symbols (whose probabilities are irrelevant and are not shown) such that
four symbols are assigned 3-bit codes, five symbols are assigned 5-bit codes, and the
remaining seven symbols are assigned 6-bit codes. Table 2.28a shows a set of possible
Huffman codes, while Table 2.28b shows a set of canonical Huffman codes. It is easy to
see that the seven 6-bit canonical codes are simply the 6-bit integers 0 through 6. The
five codes are the 5-bit integers 4 through 8, and the four codes are the 3-bit integers 3
through 6. We first show how these codes are generated and then how they are used.

1: 000 011 9: 10100 01000

2: 001 100 10: 101010 000000

3: 010 101 11: 101011 000001

4: 011 110 12: 101100 000010

5: 10000 00100 13: 101101 000011

6: 10001 00101 14: 101110 000100

7: 10010 00110 15: 101111 000101 length: 1 2 345 6

8: 10011 00111 16: 110000 000110 numl: 0040657
(a) (b) (a) (b) first: 243540

Table 2.28. Table 2.29.

The top row (length) of Table 2.29 lists the possible code lengths, from 1 to 6 bits.
The second row (numl) lists the number of codes of each length, and the bottom row
(first) lists the first code in each group. This is why the three groups of codes start with
values 3, 4, and 0. To obtain the top two rows we need to compute the lengths of all
the Huffman codes for the given alphabet (see below). The third row is computed by
setting “first[6] :=0;” and iterating

for 1:=5 downto 1 do first[1l]:=[(first[1+1]+numl[1+1])/2];
This guarantees that all the 3-bit prefixes of codes longer than three bits will be less
than first[3] (which is 3), all the 5-bit prefixes of codes longer than five bits will be
less than first[5] (which is 4), and so on.

Now for the use of these unusual codes. Canonical Huffman codes are useful in
cases where the alphabet is large and where fast decoding is mandatory. Because of the
way the codes are constructed, it is easy for the decoder to identify the length of a code
by reading and examining input bits one by one. Once the length is known, the symbol
can be found in one step. The pseudocode listed here shows the rules for decoding:

1:=1; input v;

while v<first[1]

append next input bit to v; 1:=1+1;
endwhile

As an example, suppose that the next code is 00110. As bits are input and appended
to v, it goes through the values 0, 00=0, 001=1, 0011=3, 00110=6, while 1 is incremented
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from 1 to 5. All steps except the last satisfy v<first[1], so the last step determines
the value of 1 (the code length) as 5. The symbol itself is found by subtracting v —
first[5] =6 —4 = 2, so it is the third symbol (numbering starts at 0) in group 1 =5
(symbol 7 of the 16 symbols).

It has been mentioned that canonical Huffman codes are useful in cases where the
alphabet is large and fast decoding is important. A practical example is a collection
of documents archived and compressed by a word-based adaptive Huffman coder (Sec-
tion 8.6.1). In an archive a slow encoder is acceptable, but the decoder should be fast.
When the individual symbols are words, the alphabet may be huge, making it impracti-
cal, or even impossible, to construct the Huffman code-tree. However, even with a huge
alphabet, the number of different code lengths is small, rarely exceeding 20 bits (just
the number of 20-bit codes is about a million). If canonical Huffman codes are used,
and the maximum code length is L, then the code length 1 of a symbol is found by the
decoder in at most L steps, and the symbol itself is identified in one more step.

He uses statistics as a drunken man uses lampposts—for support rather than
illumination.

—Andrew Lang, Treasury of Humorous Quotations

The last point to be discussed is the encoder. In order to construct the canonical
Huffman code, the encoder needs to know the length of the Huffman code of every sym-
bol. The main problem is the large size of the alphabet, which may make it impractical
or even impossible to build the entire Huffman code-tree in memory. The algorithm
described here (see [Hirschberg and Lelewer 90] and [Sieminski 88]) solves this problem.
It calculates the code sizes for an alphabet of n symbols using just one array of size 2n.
One half of this array is used as a heap, so we start with a short description of this useful
data structure.

A binary tree is a tree where every node has at most two children (i.e., it may have
0, 1, or 2 children). A complete binary tree is a binary tree where every node except
the leaves has exactly two children. A balanced binary tree is a complete binary tree
where some of the bottom-right nodes may be missing (see also page 125 for another
application of those trees). A heap is a balanced binary tree where every leaf contains a
data item and the items are ordered such that every path from a leaf to the root traverses
nodes that are in sorted order, either nondecreasing (a max-heap) or nonincreasing (a
min-heap). Figure 2.30 shows examples of min-heaps.

ﬁﬁ%ﬁ%ﬁ%

| || - || | || ﬁ

1317 20 25 13 17 20 13 17 20 25 17 20
(a) (b) () (d)

Figure 2.30: Min-Heaps.
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A common operation on a heap is to remove the root and rearrange the remaining
nodes to get back a heap. This is called sifting the heap. The four parts of Figure 2.30
show how a heap is sifted after the root (with data item 5) has been removed. Sifting
starts by moving the bottom-right node to become the new root. This guarantees that
the heap will remain a balanced binary tree. The root is then compared with its children
and may have to be swapped with one of them in order to preserve the ordering of a
heap. Several more swaps may be necessary to completely restore heap ordering. It is
easy to see that the maximum number of swaps equals the height of the tree, which is
[logy 1]

The reason a heap must always remain balanced is that this makes it possible to
store it in memory without using any pointers. The heap is said to be “housed” in an
array. To house a heap in an array, the root is placed in the first array location (with
index 1), the two children of the node at array location 4 are placed at locations 2i and
2i 4 1, and the parent of the node at array location j is placed at location |j/2]. Thus
the heap of Figure 2.30a is housed in an array by placing the nodes 5, 9, 11, 13, 17, 20,
and 25 in the first seven locations of the array.

The algorithm uses a single array A of size 2n. The frequencies of occurrence of the
n symbols are placed in the top half of A (locations n + 1 through 2n), and the bottom
half of A (locations 1 through n) becomes a min-heap whose data items are pointers to
the frequencies in the top half (Figure 2.31a). The algorithm then goes into a loop where
in each iteration the heap is used to identify the two smallest frequencies and replace
them with their sum. The sum is stored in the last heap position A[h], and the heap
shrinks by one position (Figure 2.31b). The loop repeats until the heap is reduced to
just one pointer (Figure 2.31c).

| I

(a)

| Heap pointers | Leaves |
1 n 2n

. | —

(b) | Heap pointers | Tree pointers and leaves |
1 h 2n

(1 ] !

(c) | | Tree pointers |

h 2n

Figure 2.31: Huffman Heaps and Leaves in an Array.

We now illustrate this part of the algorithm using seven frequencies. The table
below shows how the frequencies and the heap are initially housed in an array of size
14. Pointers are shown in italics, and the heap is delimited by square brackets.

7 8 9 10 11 12 13 14

1 2 3 4 56
19 825 20 13 17 9 11 5

(14 12 13 10 1
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The first iteration selects the smallest frequency (5), removes the root of the heap
(pointer 14), and leaves A[7] empty.

1 2 34 567 8 9 10 1 12 13 1

(12 10 18 8 11 9] 25 20 13 17 9 11 5

The heap is sifted, and its new root (12) points to the second smallest frequency (9)
in A[12]. The sum 5+ 9 is stored in the empty location 7, and the three array locations
A[1], A[12], and A[14] are set to point to that location.

1 2 34 56 7 8 9 10 11 12 13 14
[7 10 13 8 11 9] 5+9 25 20 13 17 7 11 7
The heap is now sifted.

1 234 5 6 7 8 9 10 11 12 13 14

[13 10 7 8 11 9] 14 25 20 13 17 7 11 7
The new root is 13, implying that the smallest frequency (11) is stored at A[13].
The root is removed, and the heap shrinks to just five positions, leaving location 6 empty.

1 23456 7 8 910 1 12 13 14

[10 11 7 8 9] 14 25 20 13 17 7 11 7

The heap is now sifted. The new root is 10, showing that the second smallest
frequency, 13, is stored at A[10]. The sum 11 + 13 is stored at the empty location 6,
and the three locations A[1], A[13], and A[10] are set to point to 6.

1 2345 6 7 8 9 10 11 12 13 14
(6 11 7 8 9] 11413 14 25 20 6 17 7 6 7

o Exercise 2.21: Complete this loop.
o Exercise 2.22: Complete this loop.

o Exercise 2.23: Find the lengths of all the other codes.

Considine’s Law. Whenever one word or letter can change the
entire meaning of a sentence, the probability of an error being
made will be in direct proportion to the embarrassment it will
cause.

—Bob Considine
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2.9 Adaptive Huffman Coding

The Huffman method assumes that the frequencies of occurrence of all the symbols of
the alphabet are known to the compressor. In practice, the frequencies are seldom, if
ever, known in advance. One approach to this problem is for the compressor to read
the original data twice. The first time, it just calculates the frequencies. The second
time, it compresses the data. Between the two passes, the compressor constructs the
Huffman tree. Such a method is called semiadaptive (page 8) and is normally too slow
to be practical. The method that is used in practice is called adaptive (or dynamic)
Huffman coding. This method is the basis of the UNIX compact program. (See also
Section 8.6.1 for a word-based version of adaptive Huffman coding.) The method was
originally developed by [Faller 73] and [Gallager 78] with substantial improvements by
[Knuth 85].

The main idea is for the compressor and the decompressor to start with an empty
Huffman tree and to modify it as symbols are being read and processed (in the case of the
compressor, the word “processed” means compressed; in the case of the decompressor, it
means decompressed). The compressor and decompressor should modify the tree in the
same way, so at any point in the process they should use the same codes, although those
codes may change from step to step. We say that the compressor and decompressor
are synchronized or that they work in lockstep (although they don’t necessarily work
together; compression and decompression normally take place at different times). The
term mirroring is perhaps a better choice. The decoder mirrors the operations of the
encoder.

Initially, the compressor starts with an empty Huffman tree. No symbols have been
assigned codes yet. The first symbol being input is simply written on the output stream
in its uncompressed form. The symbol is then added to the tree and a code assigned
to it. The next time this symbol is encountered, its current code is written on the
stream, and its frequency incremented by one. Since this modifies the tree, it (the tree)
is examined to see whether it is still a Huffman tree (best codes). If not, it is rearranged,
which results in changing the codes (Section 2.9.2).

The decompressor mirrors the same steps. When it reads the uncompressed form
of a symbol, it adds it to the tree and assigns it a code. When it reads a compressed
(variable-size) code, it scans the current tree to determine what symbol the code belongs
to, and it increments the symbol’s frequency and rearranges the tree in the same way
as the compressor.

The only subtle point is that the decompressor needs to know whether the item
it has just input is an uncompressed symbol (normally, an 8-bit ASCII code, but see
Section 2.9.1) or a variable-size code. To remove any ambiguity, each uncompressed
symbol is preceded by a special, variable-size escape code. When the decompressor reads
this code, it knows that the next 8 bits are the ASCII code of a symbol that appears in
the compressed stream for the first time.

The trouble is that the escape code should not be any of the variable-size codes
used for the symbols. These codes, however, are being modified every time the tree is
rearranged, which is why the escape code should also be modified. A natural way to
do this is to add an empty leaf to the tree, a leaf with a zero frequency of occurrence,
that’s always assigned to the 0-branch of the tree. Since the leaf is in the tree, it gets a
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variable-size code assigned. This code is the escape code preceding every uncompressed
symbol. As the tree is being rearranged, the position of the empty leaf—and thus its
code—change, but this escape code is always used to identify uncompressed symbols in
the compressed stream. Figure 2.32 shows how the escape code moves and changes as
the tree grows.

Figure 2.32: The Escape Code.

This method was used to compress/decompress data in the V.32 protocol for 14,400-
baud modems.

Escape is not his plan. I must face him. Alone.
—David Prowse as Lord Darth Vader in Star Wars (1977)

2.9.1 Uncompressed Codes

If the symbols being compressed are ASCII characters, they may simply be assigned
their ASCII codes as uncompressed codes. In the general case where there may be any
symbols, uncompressed codes of two different sizes can be assigned by a simple method.
Here is an example for the case n = 24. The first 16 symbols can be assigned the numbers
0 through 15 as their codes. These numbers require only 4 bits, but we encode them in 5
bits. Symbols 17 through 24 can be assigned the numbers 17—16—1=0,18—-16—-1=1
through 24 —16 —1 = 7 as 4-bit numbers. We end up with the sixteen 5-bit codes 00000,
00001, ...,01111, followed by the eight 4-bit codes 0000, 0001, ...,0111.

In general, we assume an alphabet that consists of the n symbols a1, as, ..., a,. We
select integers m and r such that 2™ < n < 2™*+! and r» = n— 2™. The first 2" symbols
are encoded as the (m + 1)-bit numbers 0 through 2™ — 1. The remaining symbols are
encoded as m-bit numbers such that the code of ay is kK — 2™ — 1. This code is also
called a phased-in binary code (see page 224 for an application of these codes).

2.9.2 Modifying the Tree

The main idea is to check the tree each time a symbol is input. If the tree is no longer
a Huffman tree, it should be updated. A glance at Figure 2.33a shows what it means
for a binary tree to be a Huffman tree. The tree in the figure contains five symbols: A,
B, C, D, and E. It is shown with the symbols and their frequencies (in parentheses)
after 16 symbols have been input and processed. The property that makes it a Huffman
tree is that if we scan it level by level, scanning each level from left to right, and going
from the bottom (the leaves) to the top (the root), the frequencies will be in sorted,
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nondescending order. Thus, the bottom left node (A) has the lowest frequency, and the
top right node (the root) has the highest frequency. This is called the sibling property.

Exercise 2.24: Why is this the criterion for a tree to be a Huffman tree?

Here is a summary of the operations needed to update the tree. The loop starts
at the current node (the one corresponding to the symbol just input). This node is a
leaf that we denote by X, with frequency of occurrence F. Each iteration of the loop
involves three steps as follows:

1. Compare X to its successors in the tree (from left to right and bottom to top). If
the immediate successor has frequency F' + 1 or greater, the nodes are still in sorted
order and there is no need to change anything. Otherwise, some successors of X have
identical frequencies of F' or smaller. In this case, X should be swapped with the last
node in this group (except that X should not be swapped with its parent).

2. Increment the frequency of X from F to F'+ 1. Increment the frequencies of all its
parents.

3. If X is the root, the loop stops; otherwise, the loop repeats with the parent of node
X.

Figure 2.33b shows the tree after the frequency of node A has been incremented
from 1 to 2. It is easy to follow the three rules above to see how incrementing the
frequency of A results in incrementing the frequencies of all its parents. No swaps are
needed in this simple case because the frequency of A hasn’t exceeded the frequency of
its immediate successor B. Figure 2.33¢ shows what happens when A’s frequency has
been incremented again, from 2 to 3. The three nodes following A, namely, B, C, and
D, have frequencies of 2, so A is swapped with the last of them, D. The frequencies
of the new parents of A are then incremented, and each is compared with its successor,
but no more swaps are needed.

Figure 2.33d shows the tree after the frequency of A has been incremented to 4.
Once we decide that A is the current node, its frequency (which is still 3) is compared to
that of its successor (4), and the decision is not to swap. A’s frequency is incremented,
followed by incrementing the frequencies of its parents.

In Figure 2.33e, A is again the current node. Its frequency (4) equals that of its
successor, so they should be swapped. This is shown in Figure 2.33f, where A’s frequency
is 5. The next loop iteration examines the parent of A, with frequency 10. It should
be swapped with its successor F (with frequency 9), which leads to the final tree of
Figure 2.33g.

2.9.3 Counter Overflow

The frequency counts are accumulated in the Huffman tree in fixed-size fields, and
such fields may overflow. A 16-bit unsigned field can accommodate counts of up to
216 _ 1 = 65,535. A simple solution to the counter overflow problem is to watch the
count field of the root each time it is incremented, and when it reaches its maximum
value, to rescale all the frequency counts by dividing them by 2 (integer division). In
practice, this is done by dividing the count fields of the leaves, then updating the counts
of the interior nodes. Each interior node gets the sum of the counts of its children. The
problem is that the counts are integers, and integer division reduces precision. This may
change a Huffman tree to one that does not satisfy the sibling property.
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Figure 2.33: Updating the Huffman Tree.
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A simple example is shown in Figure 2.33h. After the counts of the leaves are halved,
the three interior nodes are updated as shown in Figure 2.33i. The latter tree, however,
is no longer a Huffman tree, since the counts are no longer in sorted order. The solution
is to rebuild the tree each time the counts are rescaled, which does not happen very
often. A Huffman data compression program intended for general use should therefore
have large count fields that would not overflow very often. A 4-byte count field overflows
at 232 — 1~ 4.3 x 10°.

It should be noted that after rescaling the counts, the new symbols being read and
compressed have more effect on the counts than the old symbols (those counted before
the rescaling). This turns out to be fortuitous since it is known from experience that
the probability of appearance of a symbol depends more on the symbols immediately
preceding it than on symbols that appeared in the distant past.

2.9.4 Code Overflow

An even more serious problem is code overflow. This may happen when many symbols
are added to the tree, and it becomes tall. The codes themselves are not stored in the
tree, since they change all the time, and the compressor has to figure out the code of a
symbol X each time X is input. Here are the details of this process:

1. The encoder has to locate symbol X in the tree. The tree has to be implemented as
an array of structures, each a node, and the array is searched linearly.

2. If X is not found, the escape code is emitted, followed by the uncompressed code of
X. X is then added to the tree.

3. If X is found, the compressor moves from node X back to the root, building the
code bit by bit as it goes along. Each time it goes from a left child to a parent, a “1”
is appended to the code. Going from a right child to a parent appends a “0” bit to the
code (or vice versa, but this should be consistent because it is mirrored by the decoder).
Those bits have to be accumulated someplace, since they have to be emitted in the
reverse order in which they are created. When the tree gets taller, the codes get longer.
If they are accumulated in a 16-bit integer, then codes longer than 16 bits would cause
a malfunction.

One solution to the code overflow problem is to accumulate the bits of a code in a
linked list, where new nodes can be created, limited in number only by the amount of
available memory. This is general but slow. Another solution is to accumulate the codes
in a large integer variable (perhaps 50 bits wide) and document a maximum code size
of 50 bits as one of the limitations of the program.

Fortunately, this problem does not affect the decoding process. The decoder reads
the compressed code bit by bit and uses each bit to move one step left or right down
the tree until it reaches a leaf node. If the leaf is the escape code, the decoder reads the
uncompressed code of the symbol off the compressed stream (and adds the symbol to
the tree). Otherwise, the uncompressed code is found in the leaf node.

Exercise 2.25: Given the 11-symbol string sir_sid,is, apply the adaptive Huffman
method to it. For each symbol input, show the output, the tree after the symbol has
been added to it, the tree after being rearranged (if necessary), and the list of nodes
traversed left to right and bottom up.
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2.9.5 A Variant

This variant of the adaptive Huffman method is simpler but less efficient. The idea is to
calculate a set of n variable-size codes based on equal probabilities, to assign those codes
to the n symbols at random, and to change the assignments “on the fly,” as symbols are
being read and compressed. The method is not efficient because the codes are not based
on the actual probabilities of the symbols in the input stream. However, it is simpler to
implement and also faster than the adaptive method described earlier, because it has to
swap rows in a table, rather than update a tree, when updating the frequencies of the
symbols.

Name Count Code | Name Count Code | Name Count Code | Name Count Code
aq 0 0 as 1 0 as 1 0 a4 2 0
as 0 10 aq 0 10 a4 1 10 as 1 10
as 0 110 as 0 110 as 0 110 as 0 110
ay 0 111 ay 0 111 ai 0 111 ay 0 111

(a) (b) (c) (d)

Figure 2.34: Four Steps in a Huffman Variant.

The main data structure is an n x 3 table where the three columns store the names
of the n symbols, their frequencies of occurrence so far, and their codes. The table is
always kept sorted by the second column. When the frequency counts in the second
column change, rows are swapped, but only columns 1 and 2 are moved. The codes in
column 3 never change. Figure 2.34 shows an example of four symbols and the behavior
of the method when the string as, a4, a4 is compressed.

Figure 2.34a shows the initial state. After the first symbol as is read, its count
is incremented, and since it is now the largest count, rows 1 and 2 are swapped (Fig-
ure 2.34b). After the second symbol a4 is read, its count is incremented and rows 2 and
4 are swapped (Figure 2.34c). Finally, after reading the last symbol ay, its count is the
largest, so rows 1 and 2 are swapped (Figure 2.34d).

The only point that can cause a problem with this method is overflow of the count
fields. If such a field is k bits wide, its maximum value is 2¥ — 1, so it will overflow
when incremented for the 2¢th time. This may happen if the size of the input stream
is not known in advance, which is very common. Fortunately, we do not really need to
know the counts, we just need them in sorted order, which makes it easy to solve this
problem.

One solution is to count the input symbols and, after 2 — 1 symbols are input and
compressed, to (integer) divide all the count fields by 2 (or shift them one position to
the right, if this is easier).

Another, similar, solution is to check each count field every time it is incremented,
and if it has reached its maximum value (if it consists of all ones), to integer divide all
the count fields by 2, as mentioned earlier. This approach requires fewer divisions but
more complex tests.

Naturally, whatever solution is adopted should be used by both the compressor and
decompressor.
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2.9.6 Vitter’s Method

An improvement of the original algorithm, due to [Vitter 87], which also includes exten-
sive analysis is based on the following key ideas:

1. A different scheme should be used to number the nodes in the dynamic Huffman
tree. It is called implicit numbering, and it numbers the nodes from the bottom up and
in each level from left to right.

2. The Huffman tree should be updated in such a way that the following will always
be satisfied. For each weight w, all leaves of weight w precede (in the sense of implicit
numbering) all the internal nodes of the same weight. This is an invariant.

These ideas result in the following benefits:

1. In the original algorithm, it is possible that a rearrangement of the tree would
move a node down one level. In the improved version, this does not happen.

2. Each time the Huffman tree is updated in the original algorithm, some nodes
may be moved up. In the improved version, at most one node has to be moved up.

3. The Huffman tree in the improved version minimizes the sum of distances from
the root to the leaves and also has the minimum height.

A special data structure, called a floating tree, is proposed to make it easy to
maintain the required invariant. It can be shown that this version performs much better
than the original algorithm. Specifically, if a two-pass Huffman method compresses an
input file of n symbols to S bits, then the original adaptive Huffman algorithm can
compress it to at most 25 + n bits, whereas the improved version can compress it down
to S + n bits—a significant difference! Notice that these results do not depend on the
size of the alphabet, only on the size n of the data being compressed and on its nature
(which determines ).

I think you’re begging the question,” said Haydock, “and I can see looming ahead one
of those terrible exercises in probability where six men have white hats and six men
have black hats and you have to work it out by mathematics how likely it is that the
hats will get mixed up and in what proportion. If you start thinking about things like
that, you would go round the bend. Let me assure you of that!

—Agatha Christie, The Mirror Crack’d

2.10 MNP5

Microcom, Inc., a maker of modems, has developed a protocol (called MNP, for Microcom
Networking Protocol) for use in its modems. Among other things, the MNP protocol
specifies how to unpack bytes into individual bits before they are sent by the modem,
how to transmit bits serially in the synchronous and asynchronous modes, and what
modulation techniques to use. Each specification is called a class, and classes 5 and 7
specify methods for data compression. These methods (especially MNP5) have become
very popular and were used by many modems in the 1980s and 1990s.

The MNP5 method is a two-stage process that starts with run-length encoding,
followed by adaptive frequency encoding.
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The first stage is described on page 26 and is repeated here. When three or more
identical consecutive bytes are found in the source stream, the compressor emits three
copies of the byte onto its output stream, followed by a repetition count. When the
decompressor reads three identical consecutive bytes, it knows that the next byte is a
repetition count (which may be zero, indicating just three repetitions). A downside
of the method is that a run of three characters in the input stream results in four
characters written to the output stream (expansion). A run of four characters results in
no compression. Only runs longer than four characters get compressed. Another, slight,
problem is that the maximum count is artificially limited to 250 instead of to 255.

The second stage operates on the bytes in the partially compressed stream generated
by the first stage. Stage 2 is similar to the method of Section 2.9.5. It starts with a
table of 256 x 2 entries, where each entry corresponds to one of the 256 possible 8-bit
bytes 00000000 to 11111111. The first column, the frequency counts, is initialized to all
zeros. Column 2 is initialized to variable-size codes, called tokens, that vary from a short
“000|0” to a long “111|11111110”. Column 2 with the tokens is shown in Table 2.35
(which shows column 1 with frequencies of zero). Each token starts with a 3-bit header,
followed by some code bits.

The code bits (with three exceptions) are the two 1-bit codes 0 and 1, the four
2-bit codes 0 through 3, the eight 3-bit codes 0 through 7, the sixteen 4-bit codes, the
thirty-two 5-bit codes, the sixty-four 6-bit codes, and the one hundred and twenty-eight
7-bit codes. This provides for a total of 2+4 4+ 8 + 16 + 32 + 64 + 128 = 254 codes. The
three exceptions are the first two codes “000|0” and “000|1”, and the last code, which
is “111]11111110” instead of the expected “111|11111111”.

When stage 2 starts, all 256 entries of column 1 are assigned frequency counts of
zero. When the next byte B is read from the input stream (actually, it is read from the
output of the first stage), the corresponding token is written to the output stream, and
the frequency of entry B is incremented by 1. Following this, tokens may be swapped to
ensure that table entries with large frequencies always have the shortest tokens (see the
next section for details). Notice that only the tokens are swapped, not the frequency
counts. Thus, the first entry always corresponds to byte “00000000” and contains its
frequency count. The token of this byte, however, may change from the original “000/0”
to something longer if other bytes achieve higher frequency counts.

Byte Freq. Token Byte Freq. Token Byte Freq. Token Byte Freq. Token
0 0 000l0 9 0 011l001 26 0 11111010 247 0 11111110111
1 0 0001 10 0 o011l010 27 0 11111011 248 0 11111111000
2 0 00110 11 0 0111011 28 0 11111100 249 0 11111111001
3 0 0011 12 0 0111100 29 0 111/1101 250 0 11111111010
4 0 010100 13 0 o011l101 30 0 11111110 251 0 11111111011
5 0 o010l01 14 0 011l110 31 0 1111111 252 0 11111111100
6 0 01010 15 0 011l111 32 0 101100000 253 0 11111111101
7 0 01011 16 0 11110000 33 0 101100001 254 0 11111111110
8 0 0111000 17 0 11110001 34 0 101100010 255 0 111/11111110

18 to 25 and 35 to 246 continue in the same pattern.
Table 2.35: The MNP5 Tokens.

The frequency counts are stored in 8-bit fields. Each time a count is incremented,
the algorithm checks to see whether it has reached its maximum value. If yes, all the
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counts are scaled down by dividing them by 2 (an integer division).

Another, subtle, point has to do with interaction between the two compression
stages. Recall that each repetition of three or more characters is replaced, in stage 1, by
three repetitions, followed by a byte with the repetition count. When these four bytes
arrive at stage 2, they are replaced by tokens, but the fourth one does not cause an
increment of a frequency count.

Example: Suppose that the character with ASCII code 52 repeats six times. Stage 1
will generate the four bytes 52,.,52,,,52,.,3, and stage 2 will replace each with a token,
will increment the entry for 52 (entry 53 in the table) by 3, but will not increment the
entry for 3 (which is entry 4 in the table). (The three tokens for the three bytes of 52
may all be different, since tokens may be swapped after each 52 is read and processed.)

The output of stage 2 consists of tokens of different sizes, from 4 to 11 bits. This
output is packed in groups of 8 bits, which get written into the output stream. At the
end, a special code consisting of 11 bits of 1 (the flush token) is written, followed by as
many 1 bits as necessary, to complete the last group of 8 bits.

The efficiency of MNP?5 is a result of both stages. The efficiency of stage 1 depends
heavily on the original data. Stage 2 also depends on the original data, but to a smaller
extent. Stage 2 tends to identify the most frequent characters in the data and assign
them the short codes. A look at Table 2.35 shows that 32 of the 256 characters have
tokens that are 7 bits or fewer in length, thereby resulting in compression. The other
224 characters have tokens that are 8 bits or longer. When one of these characters is
replaced by a long token, the result is no compression, or even expansion.

The efficiency of MNP5 therefore depends on how many characters dominate the
original data. If all characters occur with the same frequency, expansion will result. In
the other extreme case, if only four characters appear in the data, each will be assigned
a 4-bit token, and the compression factor will be 2.

Exercise 2.26: Assuming that all 256 characters appear in the original data with the
same probability (1/256 each), what will the expansion factor in stage 2 be?

2.10.1 Updating the Table

The process of updating the table of MNP5 codes by swapping rows can be done in two
ways:

1. Sorting the entire table every time a frequency is incremented. This is simple in
concept but too slow in practice, because the table is 256 entries long.

2. Using pointers in the table, and swapping pointers such that items with large fre-
quencies will point to short codes. This approach is illustrated in Figure 2.36. The
figure shows the code table organized in four columns labeled F, P, Q, and C. Columns F
and C contain the frequencies and codes; columns P and Q contain pointers that always
point to each other, so if P[i] contains index j (i.e., points to Q[j1), then Q[j] points
to P[i]. The following paragraphs correspond to the nine different parts of the figure.
(a) The first data item a is read and F[a] is incremented from 0 to 1. The algorithm
starts with pointer P[a] that contains, say, j. The algorithm examines pointer Q[j-1],
which initially points to entry F[b], the one right above F[al. Since F[a] > F[b], entry
a has to be assigned a short code, and this is done by swapping pointers P[a] and P[b]
(and also the corresponding Q pointers).
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Figure 2.36: Swapping Pointers in the MNP5 Code Table (Part I).

(b) The same process is repeated. The algorithm again starts with pointer P[a], which
now points higher, to entry b. Assuming that P[a] contains the index k, the algorithm
examines pointer Q[k-1], which points to entry c. Since F[a] > F[c], entry a should be
assigned a code shorter than that of c. This again is done by swapping pointers, this
time P[a] and P[c].
(c) This process is repeated, and since F[a] is greater than all the frequencies above it,
pointers are swapped until P[a] points to the top entry, d. At this point entry a has
been assigned the shortest code.
(d) We now assume that the next data item has been input, and F[m] incremented to
1. Pointers P[m] and the one above it are swapped as in (a) above.
(e) After a few more swaps, P [m] is now pointing to entry n (the one just below a). The
next step performs j:=P[m]; b:=Q[j-1], and the algorithm compares F[m] to F[b].
Since Fm| > F[b], pointers are swapped as shown in Figure 2.36f.
(f) After the swap, P[m] is pointing to entry a and P[b] is pointing to entry n.
(g) After a few more swaps, pointer P[m] points to the second entry p. This is how
entry m is assigned the second-shortest code. Pointer P[m] is not swapped with P[a],
since they have the same frequencies.
(h) We now assume that the third data item has been input and F[x] incremented.
Pointers P[x] and P[y] are swapped.
(i) After some more swaps, pointer P[x] points to the third table entry z. This is how
entry x is assigned the third shortest code.

Assuming that F[x] is incremented next, the reader is invited to try to figure out
how P[x] is swapped, first with P[m] and then with P[a], so that entry x is assigned
the shortest code.
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Fli]:=F[i]+1;
repeat forever
j:=P[il;
if j=1 then exit;
j:=Qlj-1]1;
if F[i]<=F[j] then exit
else
tmp:=P[i]; P[i]:=P[j]l; P[j]:=tmp;
tmp:=Q[P[il]; Q[P[i11:=Q[P[j1]; Q[P[j]]:=tmp
endif;
end repeat

Figure 2.37: Swapping Pointers in MNP5.

The pseudo-code of Figure 2.37 summarizes the pointer swapping process.

Are no probabilities to be accepted, merely because they are not certainties?

—Jane Austen, Sense and Sensibility

2.11 MNP7

More complex and sophisticated than MNP5, MNP7 combines run-length encoding with
a two-dimensional variant of adaptive Huffman coding. Stage 1 identifies runs and emits
three copies of the run character, followed by a 4-bit count of the remaining characters in
the run. A count of zero implies a run of length 3, and a count of 15 (the largest possible
in a 4-bit nibble), a run of length 18. Stage 2 starts by assigning to each character a
complete table with many variable-size codes. When a character C is read, one of the
codes in its table is selected and output, depending on the character preceding C' in the
input stream. If this character is, say, P, then the frequency count of the pair (digram)
PC is incremented by 1, and table rows may be swapped, using the same algorithm as
for MNP5, to move the pair to a position in the table that has a shorter code.

MNP7 is therefore based on a first-order Markov model, where each item is processed
depending on the item and one of its predecessors. In a k-order Markov model, an item is
processed depending on itself and k of its predecessors (not necessarily the k immediate
ones).

Here are the details. Each of the 256 8-bit bytes gets a table of codes assigned, of
size 256 x 2, where each row corresponds to one of the 256 possible bytes. Column 1
of the table is initialized to the integers 0 through 255, and column 2 (the frequency
counts) is initialized to all zeros. The result is 256 tables, each a double column of 256
rows (Table 2.38a). Variable-size codes are assigned to the rows, such that the first code
is 1-bit long, and the others get longer towards the bottom of the table. The codes are
stored in an additional code table that never changes.

When a character C' is input (the current character to be compressed), its value
is used as a pointer, to select one of the 256 tables. The first column of the table is
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Current character

0 1 2 ... 254 255

00 00 00 ... 00 00

10 10 10 ... 10 10

20 20 20 ... 20 20 cabcde

30 30 30 ... 30 30 t1 hod
Preced. : : : : : heoar
Char. 2540 2540 2540 ... 2540 2540 cures

2550 2550 2550 ... 2550 2550 R

(a) (b)

Table 2.38: The MNP7 Code Tables.

searched, to find the row with the 8-bit value of the preceding character P. Once the
row is found, the code from the same row in the code table is emitted and the count in
the second column is incremented by 1. Rows in the table may be swapped if the new
count of the digram PC is large enough.

After enough characters have been input and rows swapped, the tables start reflect-
ing the true digram frequencies of the data. Table 2.38b shows a possible state assuming
that the digrams ta, ha, ca, 1b, eb, ub, hc, etc., are common. Since the top digram is
encoded into 1 bit, MNP7 can be very efficient. If the original data consists of text in a
natural language, where certain digrams are very common, MNP7 normally produces a
high compression ratio.

2.12 Reliability

The chief downside of variable-size codes is their vulnerability to errors. The prefix prop-
erty is used to decode those codes, so an error in a single bit can cause the decompressor
to lose synchronization and be unable to decode the rest of the compressed stream. In
the worst case, the decompressor may even read, decode, and interpret the rest of the
compressed data incorrectly, without realizing that a problem has occurred.

Example: Using the code of Figure 2.18 the string CARE is coded into 10100 0011
0110 000 (without the spaces). Assuming the error 10[0/00 0011 0110 000, the decom-
pressor will not notice any problem but will decode the string as HARE.

Exercise 2.27: What will happen in the case 11[1J11 0011 0110 000 ... (the string
WARE ... with one bad bit)?

Users of Huffman codes have noticed long ago that these codes recover quickly from
an error. However, if Huffman codes are used to code run lengths, then this property
does not help, since all runs would be shifted after an error.

A simple way of adding reliability to variable-size codes is to break a long compressed
stream, as it is being transmitted, into groups of 7 bits and add a parity bit to each
group. This way, the decompressor will at least be able to detect a problem and output
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an error message or ask for a retransmission. It is, of course, possible to add more
than one parity bit to a group of data bits, thereby making it more reliable. However,
reliability is, in a sense, the opposite of compression. Compression is done by decreasing
redundancy, while reliability is achieved by increasing it. The more reliable a piece of
data is, the less compressed it is, so care should be taken when the two operations are
used together.

Some Important Standards Groups and Organizations

ANSI (American National Standards Institute) is the private sector voluntary stan-
dardization system for the United States. Its members are professional societies, con-
sumer groups, trade associations, and some government regulatory agencies (it is a
federation). It collects and distributes standards developed by its members. Its mission
is the enhancement of global competitiveness of U.S. business and the American qual-
ity of life by promoting and facilitating voluntary consensus standards and conformity
assessment systems and promoting their integrity.

ANSI was founded in 1918 by five engineering societies and three government agen-
cies, and it remains a private, nonprofit membership organization whose nearly 1,400
members are private and public sector organizations.

ANSI is located at 11 West 42nd Street, New York, NY 10036, USA. See also
http://web.ansi.org/.

ISO (International Organization for Standardization, Organisation Internationale
de Normalisation) is an agency of the United Nations whose members are standards
organizations of some 100 member countries (one organization from each country). It
develops a wide range of standards for industries in all fields.

Established in 1947, its mission is “to promote the development of standardiza-
tion in the world with a view to facilitating the international exchange of goods and
services, and to developing cooperation in the spheres of intellectual, scientific, tech-
nological and economic activity.” This is the forum where it is agreed, for example,
how thick your bank card should be, so every country in the world follows a compatible
standard. The ISO is located at 1, rue de Varembé, CH-1211 Geneva 20, Switzerland,
http://www.iso.ch/.

ITU (International Telecommunication Union) is another United Nations agency
developing standards for telecommunications. Its members are mostly companies that
make telecommunications equipment, groups interested in standards, and government
agencies involved with telecommunications. The ITU is the successor of an organization
founded by some 20 European nations in Paris in 1865.

IEC (International Electrotechnical Commission) is a nongovernmental interna-
tional organization that prepares and publishes international standards for all electrical,
electronic, and related technologies. The IEC was founded, in 1906, as a result of a
resolution passed at the International Electrical Congress held in St. Louis (USA) in
1904. Its membership consists of more than 50 participating countries, including all the
world’s major trading nations and a growing number of industrializing countries.

The IEC’s mission is to promote, through its members, international cooperation
on all questions of electrotechnical standardization and related matters, such as the
assessment of conformity to standards, in the fields of electricity, electronics and related
technologies.
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The IEC is located at 3, rue de Varembé, P.O. Box 131, CH-1211, Geneva 20,
Switzerland, http://www.iec.ch/.

QIC (Quarter-Inch Cartridge) is an international trade association, incorporated in
1987, to encourage and promote the widespread use of quarter-inch cartridge technology.
Its mission includes the promotion of QIC technology among computer users, resellers,
dealers, OEMs, system integrators, industry analysts, trade and technical press, and the
formulation of development standards for compatibility among various manufacturers’
drives, cartridges, and subsystems.

QIC’s promotional activity emphasizes cost effectiveness, reliability, and ease of
use as it establishes product class standards that bolster continued user confidence and
technology migration for the future.

The QIC is an outgrowth of the Working Group for Quarter-Inch Cartridge Drive
Compatibility (also known as QIC), an informal organization begun in 1982 by several
drive manufacturers.

Executive membership in QIC is open to all manufacturers of quarter-inch cartridge
drives and media; makers of heads, critical components, and software can become Tech-
nology Members; and any interested party with a commitment to QIC technology is
welcome to become an Associate of the organization. It is located at 100 North Hope
Avenue, Suite 20C, Santa Barbara, CA 93110-1600, USA (http://www.qic.org/).

His only other visitor was a woman: the woman who had attended his reading. At
the time she had seemed to him to be the only person present who had paid the
slightest attention to his words. With kittenish timidity she approached his table.
Richard bade her welcome, and meant it, and went on meaning it as she extracted
from her shoulder pouch a copy of a novel written not by Richard Tull but by Fyodor
Dostoevsky. The Idiot. Standing beside him, leaning over him, her face awfully warm
and near, she began to leaf through its pages, explaining. The book too was stained,
not by gouts of blood but by the vying colors of two highlighting pens, one blue, one
pink. And not just two pages but the whole six hundred. Every time the letters h and
e appeared together, as in the, then, there, as in forehead, Pashlishtchev, sheepskin,
they were shaded in blue. Every time the letters s, h, and e appeared together,
as in she, sheer, ashen, sheepskin, etc., they were shaded in pink. And since every
she contained a he, the predominance was unarguably and unsurprisingly masculine.
Which was exactly her point. “You see?” she said with her hot breath, breath redolent
of metallic medications, of batteries and printing-plates. “You see?”... The organizers
knew all about this woman—this unfortunate recurrence, this indefatigable drag—and
kept coming over to try and coax her away.

—Martin Amis, The Information

> =
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2.13 Facsimile Compression

Data compression is especially important when images are transmitted over a commu-
nications line because the user is often waiting at the receiver, eager to see something
quickly. Documents transferred between fax machines are sent as bitmaps, so a standard
data compression method was needed when those machines became popular. Several
methods were developed and proposed by the ITU-T.

The ITU-T is one of four permanent parts of the International Telecommunications
Union (ITU), based in Geneva, Switzerland (http://www.itu.ch/). It issues recommen-
dations for standards applying to modems, packet switched interfaces, V.24 connectors,
and similar devices. Although it has no power of enforcement, the standards it recom-
mends are generally accepted and adopted by industry. Until March 1993, the ITU-T
was known as the Consultative Committee for International Telephone and Telegraph
(Comité Consultatif International Télégraphique et Téléphonique, or CCITT).

’CCITT: Can’t Conceive Intelligent Thoughts Today‘

The first data compression standards developed by the ITU-T were T2 (also known
as Group 1) and T3 (Group 2). These are now obsolete and have been replaced by T4
(Group 3) and T6 (Group 4). Group 3 is currently used by all fax machines designed to
operate with the Public Switched Telephone Network (PSTN). These are the machines
we have at home, and at the time of writing, they operate at maximum speeds of 9,600
baud. Group 4 is used by fax machines designed to operate on a digital network, such as
ISDN. They have typical speeds of 64K baud. Both methods can produce compression
factors of 10 or better, reducing the transmission time of a typical page to about a
minute with the former, and a few seconds with the latter.

Some references for facsimile compression are [Anderson et al. 87], [Hunter and
Robinson 80], [Marking 90], and [McConnell 92].

2.13.1 One-Dimensional Coding

A fax machine scans a document line by line, converting each line to small black and
white dots called pels (from Picture ELement). The horizontal resolution is always 8.05
pels per millimeter (about 205 pels per inch). An 8.5-inch-wide scan line is therefore
converted to 1728 pels. The T4 standard, though, recommends to scan only about 8.2
inches, thereby producing 1664 pels per scan line (these numbers, as well as those in the
next paragraph, are all to within £1% accuracy).

The vertical resolution is either 3.85 scan lines per millimeter (standard mode) or
7.7 lines/mm (fine mode). Many fax machines have also a very-fine mode, where they
scan 15.4 lines/mm. Table 2.39 assumes a 10-inch-high page (254 mm), and shows
the total number of pels per page, and typical transmission times for the three modes
without compression. The times are long, illustrating how important data compression
is in fax transmissions.

To derive the Group 3 code, the ITU-T counted all the run lengths of white and
black pels in a set of eight “training” documents that they felt represent typical text and
images sent by fax, and used the Huffman algorithm to assign a variable-size code to
each run length. (The eight documents are described in Table 2.40. They are not shown
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Scan Pels per Pels per Time Time

lines line page (sec.) (min.)

978 1664 1.670M 170 2.82
1956 1664  3.255M 339 5.65
3912 1664  6.510M 678 11.3

Ten inches equal 254 mm. The number of pels
is in the millions, and the transmission times, at
9600 baud without compression, are between 3
and 11 minutes, depending on the mode. How-
ever, if the page is shorter than 10 inches, or if
most of it is white, the compression factor can
be 10 or better, resulting in transmission times
of between 17 and 68 seconds.

Table 2.39: Fax Transmission Times.

because they are copyrighted by the ITU-T.) The most common run lengths were found
to be 2, 3, and 4 black pixels, so they were assigned the shortest codes (Table 2.41).
Next come run lengths of 2—7 white pixels, which were assigned slightly longer codes.
Most run lengths were rare and were assigned long, 12-bit codes. Thus, Group 3 uses a
combination of RLE and Huffman coding.

Image Description

1 Typed business letter (English)

Circuit diagram (hand drawn)

Printed and typed invoice (French)

Densely typed report (French)

Printed technical article including figures and equations (French)
Graph with printed captions (French)

Dense document (Kanji)

Handwritten memo with very large white-on-black letters (English)

0 O Ui W N

Table 2.40: The Eight CCITT Training Documents.

Exercise 2.28: A run length of 1664 white pels was assigned the short code 011000.
Why is this length so common?

Since run lengths can be long, the Huffman algorithm was modified. Codes were
assigned to run lengths of 1 to 63 pels (they are the termination codes in Table 2.41a)
and to run lengths that are multiples of 64 pels (the make-up codes in Table 2.41b).
Group 3 is therefore a modified Huffman code (also called MH). The code of a run length
is either a single termination code (if the run length is short) or one or more make-up
codes, followed by one termination code (if it is long). Here are some examples:

1. A run length of 12 white pels is coded as 001000.
2. A run length of 76 white pels (= 64 + 12) is coded as 11011]/001000.
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3. A run length of 140 white pels (= 128 4+ 12) is coded as 10010/001000.
4. A run length of 64 black pels (= 64 4 0) is coded as 0000001111|0000110111.
5. A run length of 2561 black pels (2560 4 1) is coded as 000000011111]010.

Exercise 2.29: There are no runs of length zero. Why then were codes assigned to
runs of zero black and zero white pels?

Exercise 2.30: An 8.5-inch-wide scan line results in 1728 pels, so how can there be a
run of 2561 consecutive pels?

Each scan line is coded separately, and its code is terminated by the special 12-bit
EOL code 000000000001. Each line also gets one white pel appended to it on the left
when it is scanned. This is done to remove any ambiguity when the line is decoded on
the receiving end. After reading the EOL for the previous line, the receiver assumes that
the new line starts with a run of white pels, and it ignores the first of them. Examples:
1. The 14-pel line N [ W [ [ [ [T i coded as the run lengths 1w 3b 2w

2b 7w EOL, which become 000111|10]/0111|11]1111]000000000001. The decoder ignores
the single white pel at the start.

2. The line | NN [ [ [ [ W is coded as the run lengths 3w 5b 5w 2b

EOL, which becomes the binary string 1000/0011]1100|11]000000000001.

Exercise 2.31: The group 3 code for a run length of five black pels (0011) is also the
prefix of the codes for run lengths of 61, 62, and 63 white pels. Explain this.

The Group 3 code has no error correction, but many errors can be detected. Because
of the nature of the Huffman code, even one bad bit in the transmission can cause the
receiver to get out of synchronization, and to produce a string of wrong pels. This is
why each scan line is encoded separately. If the receiver detects an error, it skips bits,
looking for an EOL. This way, one error can cause at most one scan line to be received
incorrectly. If the receiver does not see an EOL after a certain number of lines, it assumes
a high error rate, and it aborts the process, notifying the transmitter. Since the codes
are between 2 and 12 bits long, the receiver detects an error if it cannot decode a valid
code after reading 12 bits.

Each page of the coded document is preceded by one EOL and is followed by six EOL
codes. Because each line is coded separately, this method is a one-dimensional coding
scheme. The compression ratio depends on the image. Images with large contiguous
black or white areas (text or black and white images) can be highly compressed. Images
with many short runs can sometimes produce negative compression. This is especially
true in the case of images with shades of gray (such as scanned photographs). Such
shades are produced by halftoning, which covers areas with many alternating black and
white pels (runs of length one).

Exercise 2.32: What is the compression ratio for runs of length one (i.e., strictly
alternating pels)?

The T4 standard also allows for fill bits to be inserted between the data bits and
the EOL. This is done in cases where a pause is necessary, or where the total number of
bits transmitted for a scan line must be a multiple of 8. The fill bits are zeros.
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‘White Black White Black
Run code- code- Run code- code-
length  word word length  word word
0 00110101 0000110111 32 00011011 000001101010
1 000111 010 33 00010010 000001101011
2 0111 11 34 00010011 000011010010
3 1000 10 35 00010100 000011010011
4 1011 011 36 00010101 000011010100
5 1100 0011 37 00010110 000011010101
6 1110 0010 38 00010111 000011010110
7 1111 00011 39 00101000 000011010111
8 10011 000101 40 00101001 000001101100
9 10100 000100 41 00101010 000001101101
10 00111 0000100 42 00101011 000011011010
11 01000 0000101 43 00101100 000011011011
12 001000 0000111 44 00101101 000001010100
13 000011 00000100 45 00000100 000001010101
14 110100 00000111 46 00000101 000001010110
15 110101 000011000 47 00001010 000001010111
(a) 16 101010 0000010111 48 00001011 000001100100
17 101011 0000011000 49 01010010 000001100101
18 0100111 0000001000 50 01010011 000001010010
19 0001100 00001100111 51 01010100 000001010011
20 0001000 00001101000 52 01010101 000000100100
21 0010111 00001101100 53 00100100 000000110111
22 0000011 00000110111 54 00100101 000000111000
23 0000100 00000101000 55 01011000 000000100111
24 0101000 00000010111 56 01011001 000000101000
25 0101011 00000011000 57 01011010 000001011000
26 0010011 000011001010 58 01011011 000001011001
27 0100100 000011001011 59 01001010 000000101011
28 0011000 000011001100 60 01001011 000000101100
29 00000010 000011001101 61 00110010 000001011010
30 00000011 000001101000 62 00110011 000001100110
31 00011010 000001101001 63 00110100 000001100111
White Black White Black
Run code- code- Run code- code-
length word word length word word
64 11011 0000001111 1344 011011010 0000001010011
128 10010 000011001000 1408 011011011 0000001010100
192 010111 000011001001 1472 010011000 0000001010101
256 0110111 000001011011 1536 010011001 0000001011010
320 00110110 000000110011 1600 010011010 0000001011011
384 00110111 000000110100 1664 011000 0000001100100
448 01100100 000000110101 1728 010011011 0000001100101
512 01100101 0000001101100 1792 00000001000 same as
576 01101000 0000001101101 1856 00000001100 white
640 01100111 0000001001010 1920 00000001101  from this
(b) 704 011001100 0000001001011 1984 000000010010 point
768 011001101 0000001001100 2048 000000010011
832 011010010 0000001001101 2112 000000010100
896 011010011 0000001110010 2176 000000010101
960 011010100 0000001110011 2240 000000010110
1024 011010101 0000001110100 2304 000000010111
1088 011010110 0000001110101 2368 000000011100
1152 011010111 0000001110110 2432 000000011101
1216 011011000 0000001110111 2496 000000011110
1280 011011001 0000001010010 2560 000000011111

Table 2.41: Group 3 and 4 Fax Codes: (a) Termination

Codes, (b) Make-Up Codes.
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Example: The binary string 000111|10]0111|11]1111|000000000001 becomes
000111[10[0111]11[1111]00[0000000001

after two zeros are added as fill bits, bringing the total length of the string to 32 bits
(= 8 x 4). The decoder sees the two zeros of the fill, followed by the 11 zeros of the
EOL, followed by the single 1, so it knows that it has encountered a fill followed by an
EOL.

See http://www.doclib.org/rfc/rfc804.html for a description of group 3.

At the time of writing, the T.4 and T.6 recommendations can also be found at URL
ftp://sunsite.doc.ic.ac.uk/ as files 7_3_01.ps.gz and 7_3_02.ps.gz (the precise
subdirectory seems to change every few years and it is recommended to locate it with a
search engine).

2.13.2 Two-Dimensional Coding

Two-dimensional coding was developed because one-dimensional coding does not pro-
duce good results for images with gray areas. Two-dimensional coding is optional on fax
machines that use Group 3 but is the only method used by machines intended to work in
a digital network. When a fax machine using Group 3 supports two-dimensional coding
as an option, each EOL is followed by one extra bit, to indicate the compression method
used for the next scan line. That bit is 1 if the next line is encoded with one-dimensional
coding, and 0 if it is encoded with two-dimensional coding.

The two-dimensional coding method is also called MMR, for modified modified
READ, where READ stands for relative element address designate. The term “mod-
ified modified” is used because this is a modification of one-dimensional coding, which
itself is a modification of the original Huffman method. The two-dimensional coding
method works by comparing the current scan line (called the coding line) to its prede-
cessor (which is called the reference line) and recording the differences between them,
the assumption being that two consecutive lines in a document will normally differ by
just a few pels. The method assumes that there is an all-white line above the page, which
is used as the reference line for the first scan line of the page. After coding the first line,
it becomes the reference line, and the second scan line is coded. As in one-dimensional
coding, each line is assumed to start with a white pel, which is ignored by the receiver.

The two-dimensional coding method is less reliable than one-dimensional coding,
since an error in decoding a line will cause errors in decoding all its successors and
will propagate through the entire document. This is why the T.4 (Group 3) standard
includes a requirement that after a line is encoded with the one-dimensional method, at
most K —1 lines will be encoded with the two-dimensional coding method. For standard
resolution K = 2, and for fine resolution K = 4. The T.6 standard (Group 4) does not
have this requirement, and uses two-dimensional coding exclusively.

Scanning the coding line and comparing it to the reference line results in three cases,
or modes. The mode is identified by comparing the next run length on the reference
line [(b1b2) in Figure 2.43] with the current run length (apai) and the next one (ajas)
on the coding line. Each of these three runs can be black or white. The three modes
are as follows (see also the flow chart of Figure 2.44):
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1. Pass mode. This is the case where (b1b2) is to the left of (a1a2) and bs is to the left
of a; (Figure 2.43a). This mode does not include the case where b is above a;. When
this mode is identified, the length of run (b1b2) is coded using the codes of Table 2.42
and is transmitted. Pointer ag is moved below by, and the four values by, by, a1, and as
are updated.

2. Vertical mode. (b1by) overlaps (ajas) by not more than three pels (Figure 2.43b1,
b2). Assuming that consecutive lines do not differ by much, this is the most common
case. When this mode is identified, one of seven codes is produced (Table 2.42) and
is transmitted. Pointers are updated as in case 1 above. The performance of the two-
dimensional coding method depends on this case being common.

3. Horizontal mode. (b1bs) overlaps (ajaz) by more than three pels (Figure 2.43cl,
c2). When this mode is identified, the lengths of runs (aga;) and (ajas) are coded using
the codes of Table 2.42 and are transmitted. Pointers are updated as in cases 1 and 2
above.

...and you thought “impressive” statistics were 36-24-36.

—Advertisement, The American Statistician, November 1979

Run length to Abbre-
Mode be encoded viation Codeword
Pass b1boy P 00014-coded length of b0y
Horizontal apay,a1as H 001+coded length of aga; and a;jas
Vertical aiby =0 V(0) 1

ar by = —1 VR(1) 011

arby = -2 VR(2) 000011

arby = -3 VR(3) 0000011

arb; = +1 VL(I) 010

a1b; = +2 VL(2) 000010

a1b; = +3 VL(3) 0000010
Extension 0000001000

Table 2.42: 2D Codes for the Group 4 Method.

When scanning starts, pointer aq is set to an imaginary white pel on the left of
the coding line, and a; is set to point to the first black pel on the coding line. (Recall
that ag corresponds to an imaginary pel, which is why the first run length is |aga;| —1.)
Pointer ay is set to the first white pel following that. Pointers by, bo are set to point to
the start of the first and second runs on the reference line, respectively.

After identifying the current mode and transmitting codes according to Table 2.42,
ap is updated as shown in the flow chart, and the other four pointers are updated relative
to the new ag. The process continues until the end of the coding line is reached. The
encoder assumes an extra pel on the right of the line, with a color opposite that of the
last pel.

The extension code in Table 2.42 is used to abort the encoding process prematurely,
before reaching the end of the page. This is necessary if the rest of the page is transmitted
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(a) b1 b2
]
Reference line — PFJ
Coding line — [
agp b1bs ay Qg
Run length b1by coded. New ay becomes old bs.
(b1) b1 b
f 1 |:| !
Reference line —
left of b
Coding line — EREEN | et ot
T T T
ag al as
~—~—
a1b1
(b2) b1 by
Ref li ﬁDDDDﬁII
eference line — .
ht of b
Coding line — [ [ [ ] [ L Hen ot ;
ag ajby a; az
Run length a1b; coded. New ag becomes old a;.
(c1) bi  bo
] |
Reference line — |:||:|
Coding line — EREEEEN
T T T
ag ay a9
——N-
apay a1a2
(C2) b1 b2
! !
Reference line — HEEEENE [ [ [ |
Coding line — [T L1 [
7 7 T
aq aq as
apaq a1a9

Run lengths aga; (white) and ajaq (black) coded. New ag becomes old as.

Notes:

ag is the first pel of a new codeword and can be black or white.

a1 is the first pel to the right of ag with a different color.

a9 is the first pel to the right of a; with a different color.

. by is the first pel on the reference line to the right of ag with a different color.
5. by is the first pel on the reference line to the right of by with a different color.

Ll e

Figure 2.43: Five Run-Length Configurations: (a) Pass Mode, (b) Vertical Mode, (c) Horizontal
Mode.
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in a different code or even in uncompressed form.

o Exercise 2.33: Manually figure out the code generated from the two lines below.
Ref. dine 77T | T w F}q AEEEEE | | | | | N
Cod. line | MMM L] L[] L]
Table 2.46 summarizes the codes emitted by the group 4 encoder. Figure 2.45 is a

tree with the same codes. Each horizontal branch corresponds to another zero and each
vertical branch, to another 1.

Teamwork is the ability to work as a group toward a common vision, even if that
vision becomes extremely blurry.

—Anonymous

2.14 Arithmetic Coding

The Huffman method is simple, efficient, and produces the best codes for the individual
data symbols. However, Section 2.8 shows that the only case where it produces ideal
variable-size codes (codes whose average size equals the entropy) is when the symbols
have probabilities of occurrence that are negative powers of 2 (i.e., numbers such as
1/2, 1/4, or 1/8). This is because the Huffman method assigns a code with an integral
number of bits to each symbol in the alphabet. Information theory shows that a symbol
with probability 0.4 should ideally be assigned a 1.32-bit code, since —log, 0.4 ~ 1.32.
The Huffman method, however, normally assigns such a symbol a code of 1 or 2 bits.

Arithmetic coding overcomes the problem of assigning integer codes to the individ-
ual symbols by assigning one (normally long) code to the entire input file. The method
starts with a certain interval, it reads the input file symbol by symbol, and it uses the
probability of each symbol to narrow the interval. Specifying a narrower interval requires
more bits, so the number constructed by the algorithm grows continuously. To achieve
compression, the algorithm is designed such that a high-probability symbol narrows the
interval less than a low-probability symbol, with the result that high-probability symbols
contribute fewer bits to the output.

An interval can be specified by its lower and upper limits or by one limit and width.
We use the latter method to illustrate how an interval’s specification becomes longer as
the interval narrows. The interval [0, 1] can be specified by the two 1-bit numbers 0 and
1. The interval [0.1,0.512] can be specified by the longer numbers 0.1 and 0.412. The
very narrow interval [0.12575,0.1257586] is specified by the long numbers 0.12575 and
0.0000086.

The output of arithmetic coding is interpreted as a number in the range [0,1). [The
notation [a, b) means the range of real numbers from a to b, including a but not including
b. The range is “closed” at a and “open” at b.] Thus the code 9746509 is be interpreted
as 0.9746509, although the 0. part is not included in the output file.
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0 0 0 0 0 0 0 0 0 0
Y T o a
V(0) H P EOL

0 VR(2) VR(3)
L VRO N
VL(1) VL(2) VL(3)

2D Extensions 1D Extensions

Figure 2.45: Tree of Group 3 Codes.

Elements .
Mode to Be Coded Notation Codeword
Pass b1, bs P 0001
Horizontal aoa1, a1az H 001 + M (apa1) + M(ajaz)
ay just _
under by arbr =0 V() 1
aq to a1b1 =1 VR(].) 011
the right | a1b1 =2 | VR(2) 000011
Vertical of by arby =3 | VR(3) 0000011
a to a1b1 =1 VL(l) 010
the left | a1by =2 VL(2) 000010
of by arby =3 VL(3) 0000010
2D Extensions 0000001xxx
1D Extensions 000000001xxx
EOL 000000000001
1D Coding of Next Line EOL+‘1’
2D Coding of Next Line EOL+‘0’

Table 2.46: Group 4 Codes.
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Before we plunge into the details, here is a bit of history. The principle of arithmetic
coding was first proposed by Peter Elias in the early 1960s and was first described in
[Abramson 63]. Early practical implementations of this method were developed by
[Rissanen 76|, [Pasco 76], and [Rubin 79]. [Moffat et al. 98] and [Witten et al. 87]
should especially be mentioned. They discuss both the principles and details of practical
arithmetic coding and show examples.

The first step is to calculate, or at least to estimate, the frequencies of occurrence
of each symbol. For best results, the exact frequencies are calculated by reading the
entire input file in the first pass of a two-pass compression job. However, if the program
can get good estimates of the frequencies from a different source, the first pass may be
omitted.

The first example involves the three symbols a;, as, and ag, with probabilities
P, =04, P, =0.5, and P; = 0.1, respectively. The interval [0,1) is divided among the
three symbols by assigning each a subinterval proportional in size to its probability. The
order of the subintervals is immaterial. In our example, the three symbols are assigned
the subintervals [0,0.4), [0.4,0.9), and [0.9,1.0). To encode the string “azasazas”, we
start with the interval [0, 1). The first symbol as reduces this interval to the subinterval
from its 40% point to its 90% point. The result is [0.4,0.9). The second ay reduces
[0.4,0.9) in the same way (see note below) to [0.6,0.85), the third as reduces this to
[0.7,0.825), and the a3 reduces this to the stretch from the 90% point of [0.7,0.825) to
its 100% point, producing [0.8125,0.8250). The final code our method produces can be
any number in this final range.

(Note: The subinterval [0.6,0.85) is obtained from the interval [0.4,0.9) by 0.4 +
(0.9—-0.4) x0.4=0.6 and 0.4+ (0.9 —-0.4) x 0.9 =0.85.)

With this example in mind, it should be easy to understand the following rules,
which summarize the main steps of arithmetic coding:

1. Start by defining the “current interval” as [0,1).
2. Repeat the following two steps for each symbol s in the input stream:

2.1. Divide the current interval into subintervals whose sizes are proportional to
the symbols’ probabilities.

2.2. Select the subinterval for s and define it as the new current interval.
3. When the entire input stream has been processed in this way, the output should
be any number that uniquely identifies the current interval (i.e., any number inside the
current interval).

For each symbol processed, the current interval gets smaller, so it takes more bits to
express it, but the point is that the final output is a single number and does not consist
of codes for the individual symbols. The average code size can be obtained by dividing
the size of the output (in bits) by the size of the input (in symbols). Notice also that
the probabilities used in step 2.1 may change all the time, since they may be supplied
by an adaptive probability model (Section 2.15).

A theory has only the alternative of being right or wrong. A model
has a third possibility: it may be right, but irrelevant.

—Eigen Manfred, The Physicist’s Conception of Nature
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The next example is a little more involved. We show the compression steps for the
short string SWISS MISS. Table 2.47 shows the information prepared in the first step
(the statistical model of the data). The five symbols appearing in the input may be
arranged in any order. For each symbol, its frequency is first counted, followed by its
probability of occurrence (the frequency divided by the string size, 10). The range [0,1)
is then divided among the symbols, in any order, with each symbol getting a chunk,
or a subrange, equal in size to its probability. Thus S gets the subrange [0.5,1.0) (of
size 0.5), whereas the subrange of I is of size 0.2 [0.2,0.4). The cumulative frequencies
column is used by the decoding algorithm on page 120.

Char Freq Prob. Range CumkFreq
Total CumFreq= 10
S 5 5/10=0.5 0.5, 1.0) 5
W 1 1/10=0.1 [0.4, 0.5) 4
1 2 2/10=0.2 [0.2,0.4) 2
M 1 1/10=0.1 [0.1, 0.2) 1
U 1 1/10=0.1 [0.0, 0.1) 0

Table 2.47: Frequencies and Probabilities of Five Symbols.

The symbols and frequencies in Table 2.47 are written on the output stream before
any of the bits of the compressed code. This table will be the first thing input by the
decoder.

The encoding process starts by defining two variables, Low and High, and setting
them to 0 and 1, respectively. They define an interval [Low, High). As symbols are being
input and processed, the values of Low and High are moved closer together, to narrow
the interval.

After processing the first symbol S, Low and High are updated to 0.5 and 1, respec-
tively. The resulting code for the entire input stream will be a number in this range
(0.5 < Code < 1.0). The rest of the input stream will determine precisely where, in
the interval [0.5,1), the final code will lie. A good way to understand the process is to
imagine that the new interval [0.5,1) is divided among the five symbols of our alpha-
bet using the same proportions as for the original interval [0,1). The result is the five
subintervals [0.5,0.55), [0.55,0.60), [0.60,0.70), [0.70,0.75), and [0.75,1.0). When the
next symbol W is input, the third of those subintervals is selected and is again divided
into five subsubintervals.

As more symbols are being input and processed, Low and High are being updated
according to

NewHigh:=01dLow+Range*HighRange (X) ;
NewLow:=01dLow+Range*LowRange (X) ;

where Range=01dHigh—01dLow and LowRange (X), HighRange (X) indicate the low and
high limits of the range of symbol X, respectively. In the example above, the second
input symbol is W, so we update Low := 0.5 + (1.0 — 0.5) x 0.4 = 0.70, High := 0.5 +
(1.0—0.5) x 0.5 = 0.75. The new interval [0.70,0.75) covers the stretch [40%, 50%) of the
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subrange of S. Table 2.48 shows all the steps involved in coding the string SWISS MISS
(the first three steps are illustrated graphically in Figure 2.61a). The final code is the
final value of Low, 0.71753375, of which only the eight digits 71753375 need be written
on the output stream (but see later for a modification of this statement).

S L 0.7175325 4 (0.717535 — 0.7175325) x 0.5= 0.71753375
H 0.7175325 + (0.717535 — 0.7175325) x 1.0=0.717535

Char. The calculation of low and high
S L 0.0+ (1.0—-0.0) x0.5=0.5
H 0.0+ (1.0—-0.0) x 1.0=1.0
W L 0.5+ (1.0 —0.5) x 0.4=0.70
H 0.54 (1.0 —0.5) x 0.5=0.75
I L 0.7+ (0.75 — 0.70) x 0.2=0.71
H 0.7+ (0.75 — 0.70) x 0.4=0.72
S L 0.714 (0.72 —0.71) x 0.5=0.715
H 0.714 (0.72 — 0.71) x 1.0=0.72
S L 0.715+ (0.72 — 0.715) x 0.5=0.7175
H 0.715+ (0.72 — 0.715) x 1.0=10.72
U L 0.7175 + (0.72 — 0.7175) x 0.0= 0.7175
H 0.7175 + (0.72 — 0.7175) x 0.1=0.71775
M L 0.7175 + (0.71775 — 0.7175) x 0.1 = 0.717525
H 0.7175 + (0.71775 — 0.7175) x 0.2= 0.717550
I L 0.717525 + (0.71755 — 0.717525) x 0.2=0.717530
H 0.717525 + (0.71755 — 0.717525) x 0.4=0.717535
S L 0.717530 + (0.717535 — 0.717530) x 0.5= 0.7175325
H 0.717530 + (0.717535 — 0.717530) x 1.0=0.717535
)
)

Table 2.48: The Process of Arithmetic Encoding.

The decoder works in reverse. It starts by inputting the symbols and their ranges,
and reconstructing Table 2.47. It then inputs the rest of the code. The first digit is 7,
so the decoder immediately knows that the entire code is a number of the form 0.7....
This number is inside the subrange [0.5,1) of S, so the first symbol is S. The decoder
then eliminates the effect of symbol S from the code by subtracting the lower limit 0.5
of S and dividing by the width of the subrange of S (0.5). The result is 0.4350675, which
tells the decoder that the next symbol is W (since the subrange of W is [0.4,0.5)).

To eliminate the effect of symbol X from the code, the decoder performs the oper-
ation Code:=(Code-LowRange (X)) /Range, where Range is the width of the subrange of
X. Table 2.50 summarizes the steps for decoding our example string (notice that it has
two rows per symbol).

The next example is of three symbols with probabilities as shown in Table 2.51a.
Notice that the probabilities are very different. One is large (97.5%) and the others
much smaller. This is a case of skewed probabilities.
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Encoding the string asasajazas produces the strange numbers (accurate to 16 dig-
its) in Table 2.52, where the two rows for each symbol correspond to the Low and High
values, respectively. Figure 2.49 lists the Mathematica code that computed the table.

At first glance, it seems that the resulting code is longer than the original string,
but Section 2.14.3 shows how to figure out the true compression achieved by arithmetic
coding.

Decoding this string is shown in Table 2.53 and involves a special problem. After
eliminating the effect of aj, on line 3, the result is 0. Earlier, we implicitly assumed
that this means the end of the decoding process, but now we know that there are two
more occurrences of az that should be decoded. These are shown on lines 4, 5 of the
table. This problem always occurs when the last symbol in the input stream is the one
whose subrange starts at zero. In order to distinguish between such a symbol and the
end of the input stream, we need to define an additional symbol, the end-of-input (or
end-of-file, eof). This symbol should be added, with a small probability, to the frequency
table (see Table 2.51b), and it should be encoded at the end of the input stream.

lowRange={0.998162,0.023162,0.};
highRange={1.,0.998162,0.023162};
low=0.; high=1.;
enc[i_]:=Module[{nlow,nhigh,range},
range=high-low;

nhigh=low+range highRange[[i]];
nlow=low+range lowRange[[i]];
low=nlow; high=nhigh;
Print["r=",N[range,25]," 1=",N[low,17]," h=",N[high,17]]]
enc[2]

enc[2]

enc[1]

enc[3]

enc[3]

Figure 2.49: Mathematica Code for Table 2.52.

Tables 2.54 and 2.55 show how the string asasasaseof is encoded into the number
0.0000002878086184764172, and then decoded properly. Without the eof symbol, a
string of all ags would have been encoded into a 0.

Notice how the low value is 0 until the eof is input and processed, and how the high
value quickly approaches 0. Now is the time to mention that the final code does not
have to be the final low value but can be any number between the final low and high
values. In the example of agasazaseof, the final code can be the much shorter number
0.0000002878086 (or 0.0000002878087 or even 0.0000002878088).

Exercise 2.34: Encode the string asasasas and summarize the results in a table similar
to Table 2.54. How do the results differ from those of the string azasasas?
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Char. Code—low Range
S 0.71753375 — 0.5 = 0.21753375/0.5 = 0.4350675
W 0.4350675 — 0.4 =0.0350675 /0.1 = 0.350675
I 0.350675 — 0.2 = 0.150675 /0.2 = 0.753375
S 0.753375 — 0.5 =0.253375 /0.5 = 0.50675
S 0.50675 — 0.5 =0.00675 /0.5 =0.0135
U 0.0135 -0 =0.0135 /0.1 =0.135
M 0.135 - 0.1 = 0.035 /0.1 =10.35
I 0.35—0.2 =0.15 /0.2 =10.75
S 0.75—-0.5 =0.25 /0.5=10.5
S 0.5—-0.5 =0 /0.5=0

Table 2.50: The Process of Arithmetic Decoding.

Char

Prob. Range

Char

Prob. Range

a1
a2
as

0.001838 [0.998162, 1.0)
0.975 [0.023162, 0.998162)
0.023162 0.0, 0.023162)

eof
aq
az
as

0.000001  [0.999999, 1.0)
0.001837  [0.998162, 0. 999999)
0.975 [0 023162, 0.998162)
0.023162 [0.0 0.023162)

(a)

(b)

Table 2.51: (Skewed) Probabilities of Three Symbols.

az

ag

a1

as

as

0.0+ (1.0 — 0.0) x 0.023162 = 0.023162
0.0 + (1.0 — 0.0) x 0.998162 = 0.998162
0.023162 + .975 x 0.023162 = 0.04574495
0.023162 + .975 x 0.998162 = 0.99636995
0.04574495 + 0.950625 x 0.998162 = 0.99462270125
0.04574495 + 0.950625 x 1.0 = 0.99636995
0.99462270125 + 0.00174724875 x 0.0 = 0.99462270125
0.99462270125 4 0.00174724875 x 0.023162 = 0.994663171025547
0.99462270125 + 0.00004046977554749998 x 0.0 = 0.99462270125
0.99462270125 + 0.00004046977554749998 x 0.023162 = 0.994623638610941

Table 2.52: Encoding the String asasajasas.
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Char. Code—low Range

ag 0.99462270125 — 0.023162 = 0.97146170125/0.975 = 0.99636995
a9 0.99636995 — 0.023162 = 0.97320795 /0.975 = 0.998162
a1 0.998162 — 0.998162 =0.0 /0.00138 = 0.0

as 0.0-0.0 =0.0 /0.023162= 0.0

as 0.0-0.0 =0.0 /0.023162= 0.0

Table 2.53: Decoding the String asacaiasas.

as 0.0+ (1.0 — 0.0) x 0.0= 0.0
0.0 + (1.0 — 0.0) x 0.023162 = 0.023162
as 0.0 +.023162 x 0.0= 0.0
0.0 +.023162 x 0.023162 = 0.000536478244
as 0.0 + 0.000536478244 x 0.0= 0.0
0.0 + 0.000536478244 x 0.023162 = 0.000012425909087528
as 0.0 + 0.000012425909087528 x 0.0 = 0.0

0.0 4- 0.000012425909087528 x 0.023162 = 0.0000002878089062853235
eof 0.0 4 0.0000002878089062853235 x 0.999999 = 0.0000002878086184764172
0.0 + 0.0000002878089062853235 x 1.0 = 0.0000002878089062853235

Table 2.54: Encoding the String asasasaseof.

Char. Code—low Range
a3 0.0000002878086184764172-0 =0.0000002878086184764172 /0.023162=0.00001242589666161891247
a3 0.00001242589666161891247-0=0.00001242589666161891247/0.023162=0.000536477707521756

a3 0.000536477707521756-0 =0.000536477707521756 /0.023162=0.023161976838
a3 0.023161976838-0.0 =0.023161976838 /0.023162=0.999999
eof 0.999999-0.999999 =0.0 /0.000001=0.0

Table 2.55: Decoding the String azasasaseof.

If the size of the input stream is known, it is possible to do without an eof symbol.
The encoder can start by writing this size (unencoded) on the output stream. The
decoder reads the size, starts decoding, and stops when the decoded stream reaches this
size. If the decoder reads the compressed stream byte by byte, the encoder may have to
add some zeros at the end, to make sure the compressed stream can be read in groups
of 8 bits.

> =
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2.14.1 Implementation Details

The encoding process described earlier is not practical, since it assumes that num-
bers of unlimited precision can be stored in Low and High. The decoding process de-
scribed on page 116 (“The decoder then eliminates the effect of the S from the code by
subtracting. .. and dividing ...”) is simple in principle but also impractical. The code,
which is a single number, is normally long and may also be very long. A 1 Mbyte file
may be encoded into, say, a 500 Kbyte file that consists of a single number. Dividing a
500 Kbyte number is complex and slow.

Any practical implementation of arithmetic coding should use just integers (because
floating-point arithmetic is slow and precision is lost), and they should not be very long
(preferably just single precision). We describe such an implementation here, using two
integer variables Low and High. In our example they are four decimal digits long, but
in practice they might be 16 or 32 bits long. These variables hold the low and high
limits of the current subinterval, but we don’t let them grow too much. A glance at
Table 2.48 shows that once the leftmost digits of Low and High become identical, they
never change. We therefore shift such digits out of the two variables and write one digit
on the output stream. This way, the two variables don’t have to hold the entire code,
just the most-recent part of it. As digits are shifted out of the two variables, a zero is
shifted into the right end of Low and a 9 into the right end of High. A good way to
understand this is to think of each of the two variables as the left end of an infinitely
long number. Low contains zzzxz00. .., and High= yyyy99... .

One problem is that High should be initialized to 1, but the contents of Low and
High should be interpreted as fractions less than 1. The solution is to initialize High to
9999. .., since the infinite fraction 0.999... equals 1.

(This is easy to prove. If 0.999... < 1, then their average a = (140.999...)/2 would
be a number between 0.999... and 1, but there is no way to write a. It is impossible to
give it more digits than to 0.999..., since the latter already has an infinite number of
digits. It is impossible to make the digits any bigger, since they are already 9’s. This is
why the infinite fraction 0.999... must equal 1.)

Exercise 2.35: Write the number 0.5 in binary.

Table 2.56 describes the encoding process of the string SWISS MISS. Column 1 shows
the next input symbol. Column 2 shows the new values of Low and High. Column 3
shows these values as scaled integers, after High has been decremented by 1. Column 4
shows the next digit sent to the output stream. Column 5 shows the new values of Low
and High after being shifted to the left. Notice how the last step sends the four digits
3750 to the output stream. The final output is 717533750.

Decoding is the opposite of encoding. We start with Low=0000, High=9999, and
Code=T7175 (the first four digits of the compressed stream). These are updated at each
step of the decoding loop. Low and High approach each other (and both approach Code)
until their most significant digits are the same. They are then shifted to the left, which
separates them again, and Code is also shifted at that time. An index is calculated at
each step and is used to search the cumulative frequencies column of Table 2.47 to figure
out the current symbol.

Each iteration of the loop comnsists of the following steps:
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1 2 3 4 5
S L= 0+(1 — 0)x05=05 5000 5000
= 0+(1 — 0)x1.0=10 9999 9999
W L = 05+(1 — 5)x04=07 7000 7 0000
H=0. 5+(1 — 5)x05=075 7499 7 4999
I L= 0405 — 0)x02=0.1 1000 1 0000
H= 0405 — 0)x04=02 1999 1 9999
S L= 0+(1 — 0)x05=05 5000 5000
H= 0+(1 - 0)x10=10 9999 9999
S L = 05+(1 — 05)x05=0.75 7500 7500
H= 05+(1 — 05)x1.0=1.0 9999 9999
L L =0.75+(1 — 0.75)x0.0=0.75 7500 7 5000
H=0.75+(1 — 0.75)x0.1=0.775 7749 7 7499
M L = 0.5+(0.75 — 0.5) x 0.1=0.525 5250 5 2500
H= 05+(0.75—0.5)x02=055 5499 5 4999
I L =025+(0.5—0.25)x0.2=0.3 3000 3 0000
H =0.25+(0.5—0.25)x04=0.35 3499 3 4999
S L= 0+05 — 0)x05=.25 2500 2500
H= 0+(05 — 0)x10=05 4999 4999

S L =0.25+(0.5—0.25) x 0.5=0.375 3750 3750
H =0.25+(0.5—0.25) x1.0=0.5 4999 4999

Table 2.56: Encoding SWISS, MISS by Shifting.

1. Calculate index:=((Code-Low+1)x10-1)/(High-Low+1) and truncate it to the near-
est integer. (The number 10 is the total cumulative frequency in our example.)

2. Use index to find the next symbol by comparing it to the cumulative frequencies
column in Table 2.47. In the example below, the first value of index is 7.1759, truncated
to 7. Seven is between the 5 and the 10 in the table, so it selects the S.

3. Update Low and High according to

Low:=Low+(High-Low+1)LowCumFreq[X]/10;
High:=Low+(High-Low+1)HighCumFreq[X]/10-1;

where LowCumFreq[X] and HighCumFreq[X] are the cumulative frequencies of symbol X
and of the symbol above it in Table 2.47.
4. TIf the leftmost digits of Low and High are identical, shift Low, High, and Code one
position to the left. Low gets a 0 entered on the right, High gets a 9, and Code gets the
next input digit from the compressed stream.

Here are all the decoding steps for our example:

0. Initialize Low=0000, High=9999, and Code=7175.

1. index= [(7175 — 0+ 1) x 10 —1]/(9999 — 0+ 1) = 7.1759 — 7. Symbol 8 is selected.
Low = 0+ (9999 — 0+ 1) x 5/10 = 5000. High = 0+ (9999 — 0+ 1) x 10/10 — 1 = 9999.
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2. index= [(7175 — 5000 + 1) x 10 — 1]/(9999 — 5000 + 1) = 4.3518 — 4. Symbol W is
selected.

Low = 50004 (9999—5000+1) x4/10 = 7000. High = 5000+(9999—5000+1) x5/10—1 =
7499.

After the 7 is shifted out, we have Low=0000, High=4999, and Code=1753.

3. index= [(1763 — 0+ 1) x 10 — 1]/(4999 — 0 + 1) = 3.5078 — 3. Symbol I is selected.
Low =0+ (4999 — 0+ 1) x 2/10 = 1000. High =0+ (4999 — 0+ 1) x 4/10 — 1 = 1999.
After the 1 is shifted out, we have Low=0000, High=9999, and Code=7533.

4. index= [(7533 —0+1) x 10 —1]/(9999 — 0+ 1) = 7.5339 — 7. Symbol S is selected.
Low = 0+ (9999 — 0+ 1) x 5/10 = 5000. High = 0+ (9999 — 0+ 1) x 10/10 — 1 = 9999.

5. index= [(7533 — 5000 + 1) x 10 — 1]/(9999 — 5000 + 1) = 5.0678 — 5. Symbol S is
selected.

Low = 5000+ (9999—5000+1)x5/10 = 7500. High = 5000+(9999—5000+1)x10/10—1 =
9999.

6. index= [(7533 — 7500 + 1) x 10 — 1]/(9999 — 7500 + 1) = 0.1356 — 0. Symbol , is
selected.

Low = 75004 (9999—7500+1)x0/10 = 7500. High = 7500+(9999—7500+1)x1/10—1 =
7749.

After the 7 is shifted out, we have Low=5000, High=7499, and Code=5337.

7. index= [(5337 — 5000 + 1) x 10 — 1]/(7499 — 5000 + 1) = 1.3516 — 1. Symbol M is
selected.

Low = 50004 (7499—5000+41)x 1/10 = 5250. High = 5000+ (7499—5000+1)x2/10—1 =
5499.

After the 5 is shifted out we have Low=2500, High=4999, and Code=3375.

8. index= [(3375 — 2500 + 1) x 10 — 1]/(4999 — 2500 + 1) = 3.5036 — 3. Symbol I is
selected.

Low = 25004 (4999—2500+1) x2/10 = 3000. High = 2500+ (4999—2500+1)x4/10—1 =
3499.

After the 3 is shifted out we have Low=0000, High=4999, and Code=3750.

9. index= [(37560 —0+1) x 10 — 1]/(4999 — 0+ 1) = 7.5018 — 7. Symbol S is selected.
Low = 0+ (4999 — 0+ 1) x 5/10 = 2500. High = 0 + (4999 — 0+ 1) x 10/10 — 1 = 4999.
10. index= [(3750 — 2500 + 1) x 10 — 1] /(4999 — 2500 + 1) = 5.0036 — 5. Symbol S is
selected.

Low = 2500+ (4999—2500+1)x5/10 = 3750. High = 2500+(4999—2500+1)x10/10—1 =
4999.

Exercise 2.36: How does the decoder know to stop the loop at this point?

2.14.2 Underflow

Table 2.57 shows the steps in encoding the string azasasasas by shifting. This table is
similar to Table 2.56, and it illustrates the problem of underflow. Low and High approach
each other, and since Low is always 0 in this example, High loses its significant digits as
it approaches Low.
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1 2 3 4 5
1 L=0+(1 — 0)x0.0 =0.0 000000 0 000000
H=0+(1 - 0)x0.023162= 0.023162 023162 0 231629
2 L=0+(0.231629 — 0)x0.0 =0.0 000000 0 000000
H=04(0.231629 — 0)x0.023162= 0.00536478244 005364 0 053649
3 L=0+(0.053649 — 0)x0.0 =0.0 000000 0 000000
H=04(0.053649 — 0)x0.023162= 0.00124261813 001242 0 012429
4 L=0+(0.012429 — 0)x0.0 =0.0 000000 0 000000
H=04(0.012429 — 0)x0.023162= 0.00028783049 000287 0 002879
5 L=0+(0.002879 — 0)x0.0 =0.0 000000 0 000000
H=04-(0.002879 — 0)x0.023162= 0.00006668339 000066 0 000669

Table 2.57: Encoding asasasasas by Shifting.

Underflow may happen not just in this case but in any case where Low and High
need to converge very closely. Because of the finite size of the Low and High variables,
they may reach values of, say, 499996 and 500003, and from there, instead of reaching
values where their most significant digits are identical, they reach the values 499999 and
500000. Since the most significant digits are different, the algorithm will not output
anything, there will not be any shifts, and the next iteration will only add digits beyond
the first six ones. Those digits will be lost, and the first six digits will not change. The
algorithm will iterate without generating any output until it reaches the eof.

The solution to this problem is to detect such a case early and rescale both variables.
In the example above, rescaling should be done when the two variables reach values of
49xxxx and 50yyyy. Rescaling should squeeze out the second most significant digits,
end up with 4xxxx0 and 5yyyy9, and increment a counter cntr. The algorithm may
have to rescale several times before the most-significant digits become equal. At that
point, the most-significant digit (which can be either 4 or 5) should be output, followed
by cntr zeros (if the two variables converged to 4) or nines (if they converged to 5).

2.14.3 Final Remarks

All the examples so far have been in decimal, since the computations involved are easier
to understand in this number base. It turns out that all the algorithms and rules
described above apply to the binary case as well and can be used with only one change:
Every occurrence of 9 (the largest decimal digit) should be replaced by 1 (the largest
binary digit).

The examples above don’t seem to show any compression at all. It seems that
the three example strings SWISS MISS, asasajazasz, and asazazazeof are encoded into
very long numbers. In fact, it seems that the length of the final code depends on the
probabilities involved. The long probabilities of Table 2.51a generate long numbers in
the encoding process, whereas the shorter probabilities of Table 2.47 result in the more
reasonable Low and High values of Table 2.48. This behavior demands an explanation.
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I am ashamed to tell you to how many figures I carried these
computations, having no other business at that time.

—TIsaac Newton

To figure out the kind of compression achieved by arithmetic coding, we have to
consider two facts: (1) In practice, all the operations are performed on binary numbers,
so we have to translate the final results to binary before we can estimate the efficiency
of the compression; (2) since the last symbol encoded is the eof, the final code does not
have to be the final value of Low; it can be any value between Low and High. This makes
it possible to select a shorter number as the final code that’s being output.

Table 2.48 encodes the string SWISS MISS into the final Low and High values
0.71753375 and 0.717535. The approximate binary values of these numbers are
0.10110111101100000100101010111 and 0.1011011110110000010111111011, so we can se-
lect the number 10110111101100000100 as our final, compressed output. The ten-symbol
string has thus been encoded into a 20-bit number. Does this represent good compres-
sion?

The answer is yes. Using the probabilities of Table 2.47, it is easy to calculate the
probability of the string SWISS_MISS. It is P = 0.5° x 0.1 x 0.2 x 0.1 x 0.1 = 1.25 x 1076,
The entropy of this string is therefore — log, P = 19.6096. Twenty bits are therefore the
minimum needed in practice to encode the string.

The symbols in Table 2.51a have probabilities 0.975, 0.001838, and 0.023162. These
numbers require quite a few decimal digits, and as a result, the final Low and High values
in Table 2.52 are the numbers 0.99462270125 and 0.994623638610941. Again it seems
that there is no compression, but an analysis similar to the above shows compression
that’s very close to the entropy.

The probability of the string aszasaiaszas is 0.975% x0.001838 x0.0231622 ~ 9.37361 x
1077, and —log, 9.37361 x 10~7 ~ 20.0249.

The binary representations of the final values of Low and High in Table 2.52 are
0.111111101001111110010111111001 and 0.111111101001111110100111101. We can se-
lect any number between these two, so we select 1111111010011111100, a 19-bit number.
(This should have been a 21-bit number, but the numbers in Table 2.52 have limited
precision and are not exact.)

Exercise 2.37: Given the three symbols a1, as, and eof, with probabilities P, = 0.4,
P, = 0.5, and Peof = 0.1, encode the string asasaseof and show that the size of the
final code equals the (practical) minimum.

The following argument shows why arithmetic coding can, in principle, be a very
efficient compression method. We denote by s a sequence of symbols to be encoded, and
by b the number of bits required to encode it. As s gets longer, its probability P(s) gets
smaller and b gets larger. Since the logarithm is the information function, it is easy to
see that b should grow at the same rate that log, P(s) shrinks. Their product should
therefore be constant, or close to a constant. Information theory shows that b and P(s)
satisfy the double inequality

2 < 2P(s) < 4,

which implies
1 —log, P(s) < b < 2—log, P(s). (2.6)
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As s gets longer, its probability P(s) shrinks, the quantity —log, P(s) becomes a large
positive number, and the double inequality of Equation (2.6) shows that in the limit,
b approaches —log, P(s). This is why arithmetic coding can, in principle, compress a
string of symbols to its theoretical limit.

For more information on this topic, see [Moffat et al. 98] and [Witten et al. 87].

2.15 Adaptive Arithmetic Coding

Two features of arithmetic coding make it easy to extend:

1. One of the main encoding steps (page 115) updates NewLow and NewHigh. Similarly,
one of the main decoding steps (step 3 on page 121) updates Low and High according to

Low:=Low+(High-Low+1)LowCumFreq[X]/10;
High:=Low+(High-Low+1)HighCumFreq[X]/10-1;

This means that in order to encode symbol X, the encoder should be given the cumulative
frequencies of the symbol and of the one above it (see Table 2.47 for an example of
cumulative frequencies). This also implies that the frequency of X (or, equivalently, its
probability) could be changed each time it is encoded, provided that the encoder and
the decoder agree on how to do this.

2. The order of the symbols in Table 2.47 is unimportant. They can even be swapped
in the table during the encoding process as long as the encoder and decoder do it in the
same way.

With this in mind, it is easy to understand how adaptive arithmetic coding works.
The encoding algorithm has two parts: the probability model and the arithmetic encoder.
The model reads the next symbol from the input stream and invokes the encoder, sending
it the symbol and the two required cumulative frequencies. The model then increments
the count of the symbol and updates the cumulative frequencies. The point is that the
symbol’s probability is determined by the model from its old count, and the count is
incremented only after the symbol has been encoded. This makes it possible for the
decoder to mirror the encoder’s operations. The encoder knows what the symbol is even
before it is encoded, but the decoder has to decode the symbol in order to find out
what it is. The decoder can therefore use only the old counts when decoding a symbol.
Once the symbol has been decoded, the decoder increments its count and updates the
cumulative frequencies in exactly the same way as the encoder.

The model should keep the symbols, their counts (frequencies of occurrence), and
their cumulative frequencies in an array. This array should be kept in sorted order of the
counts. Each time a symbol is read and its count is incremented, the model updates the
cumulative frequencies, then checks to see whether it is necessary to swap the symbol
with another one, to keep the counts in sorted order.

It turns out that there is a simple data structure that allows for both easy search
and update. This structure is a balanced binary tree housed in an array. (A balanced
binary tree is a complete binary tree where some of the bottom-right nodes may be
missing.) The tree should have a node for every symbol in the alphabet, and since it
is balanced, its height is [log, n], where n is the size of the alphabet. For n = 256 the
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height of the balanced binary tree is 8, so starting at the root and searching for a node
takes at most eight steps. The tree is arranged such that the most probable symbols (the
ones with high counts) are located near the root, which speeds up searches. Table 2.58a
shows an example of a ten-symbol alphabet with counts. Table 2.58b shows the same
symbols sorted by count.

ap a2 a3 a4 G5 G a7y ag ag aiop
11 12 12 2 5 1 2 19 12 8

(a)
ag a2 a3 a9 a3 aipp as a4 a7 Qg
19 12 12 12 11 8 5 2 2 1

(b)

Table 2.58: A Ten-Symbol Alphabet With Counts.

The sorted array “houses” the balanced binary tree of Figure 2.60a. This is a simple,
elegant way to build a tree. A balanced binary tree can be housed in an array without
the use of any pointers. The rule is that the first array location (with index 1) houses
the root, the two children of the node at array location 7 are housed at locations 27 and
2i + 1, and the parent of the node at array location j is housed at location |j/2|. It
is easy to see how sorting the array has placed the symbols with largest counts at and
near the root.

In addition to a symbol and its count, another value is now added to each tree node,
the total counts of its left subtree. This will be used to compute cumulative frequencies.
The corresponding array is shown in Table 2.59a.

Assume that the next symbol read from the input stream is ag. Its count is incre-
mented from 12 to 13. The model keeps the array in sorted order by searching for the
farthest array element left of ag that has a count smaller than that of ag. This search
can be a straight linear search if the array is short enough, or a binary search if the array
is long. In our case, symbols ag and ay should be swapped (Table 2.59b). Figure 2.60b
shows the tree after the swap. Notice how the left-subtree counts have been updated.

Finally, here is how the cumulative frequencies are computed from this tree. When
the cumulative frequency for a symbol X is needed, the model follows the tree branches
from the root to the node containing X while adding numbers into an integer af. Each
time a right branch is taken from an interior node N, af is incremented by the two
numbers (the count and the left-subtree count) found in that node. When a left branch
is taken, af is not modified. When the node containing X is reached, the left-subtree
count of X is added to af, and af then contains the quantity LowCumFreq[X].

As an example, we trace the tree of Figure 2.60a from the root to symbol ag, whose
cumulative frequency is 28. A right branch is taken at node as, adding 12 and 16 to
af. A left branch is taken at node a;, adding nothing to af. When reaching ag, its
left-subtree count, 0, is added to af. The result in af is 12 + 16 = 28, as can be verified
from Figure 2.60c. The quantity HighCumFreq[X] is obtained by adding the count of ag
(which is 1) to LowCumFreq[X].
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ag az az ag a1 Ay G5 G4 a7 Gg
19 12 12 12 11 8§ o5 2 2 1
40 16 8 2 1 0o 0 0 0 O

ag a9 asz a2 ai G a5 G4 a7 G
19 13 12 12 11 8 5 2 2 1
41 16 8 2 1 0 0 0 0 0

Tables 2.59: A Ten-Symbol Alphabet With Counts.

To trace the tree and find the path from the root to ag, the algorithm performs the
following steps:
1. Find ag in the array housing the tree by means of a binary search. In our example
the node with ag is found at array location 10.
2. Integer-divide 10 by 2. The remainder is 0, which means that ag is the left child of
its parent. The quotient is 5, which is the array location of the parent.
3. Location 5 of the array contains a;. Integer-divide 5 by 2. The remainder is 1, which
means that a; is the right child of its parent. The quotient is 2, which is the array
location of a;’s parent.
4. Location 2 of the array contains ay. Integer-divide 2 by 2. The remainder is 0, which
means that ao is the left child of its parent. The quotient is 1, the array location of the
root, so the process stops.

The PPM compression method, Section 2.18, is a good example of a statistical
model that invokes an arithmetic encoder in the way described here.

The driver held out a letter. Boldwood seized it and opened it, expecting another
anonymous one—so greatly are people’s ideas of probability a mere sense that prece-
dent will repeat itself. “I don’t think it is for you, sir,” said the man, when he saw
Boldwood’s action. “Though there is no name I think it is for your shepherd.”

—Thomas Hardy, Far From The Madding Crowd

2.15.1 Range Encoding

The use of integers in arithmetic coding is a must in any practical implementation, but
it results in slow encoding because of the need for frequent renormalizations. The main
steps in any integer-based arithmetic coding implementation are (1) proportional range
reduction and (2) range expansion (renormalization).

Range encoding (or range coding) is an improvement to arithmetic coding that
reduces the number of renormalizations and thereby speeds up integer-based arithmetic
coding by factors of up to 2. The main references are [Schindler 98] and [Campos 06],
and the description here is based on the former.

The main idea is to treat the output not as a binary number, but as a number to
another base (256 is commonly used as a base, implying that each digit is a byte). This
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ag,19,40
a2,12,16 as3,12,8
a/971272 a1,11,1 01078,0 a5a5a0
(14,2,0 a7,2,0 a67170
(a)
as, 19,41
a9,13,16 a3,12,8
az,12,2 a,11,1  @10,8,0 a5,5,0
CL4,2,0 a7,2,0 06,170
(b)

a4 2 0—1

ag 12 2—13
ar 2 1415
as 12 16—27
ag 1 2828
a; 11 2939
as 19 4058
aio 8 59—66
as 12 67—78
as 5 T79—83

Figure 2.60: Adaptive Arithmetic Coding.
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requires fewer renormalizations and no bitwise operations. The following analysis may
shed light on this method.
At any point during arithmetic coding, the output consists of four parts as follows:

1. The part already written on the output. This part will not change.

2. One digit (bit, byte, or a digit to another base) that may be modified by at most
one carry when adding to the lower end of the interval. (There cannot be two carries
because when this digit was originally determined, the range was less than or equal to
one unit. Two carries require a range greater than one unit.)

3. A (possibly empty) block of digits that passes on a carry (1 in binary, 9 in decimal,
255 for base-256, etc.) and are represented by a counter counting their number.

4. The low variable of the encoder.

The following states can occur while data is encoded:

= No renormalization is needed because the range is in the desired interval.

s The low end plus the range (this is the upper end of the interval) will not produce
any carry. In this case the second and third parts can be output because they will never
change.

m  The digit produced will become part two, and part three will be empty. The low
end has already produced a carry. In this case, the (modified) second and third parts
can be output; there will not be another carry. Set the second and third part as before.

»  The digit produced will pass on a possible future carry, so it is added to the block
of digits of part three.

The difference between conventional integer-based arithmetic coding and range cod-
ing is that in the latter, part two, which may be modified by a carry, has to be stored
explicitly. With binary output this part is always 0 since the 1’s are always added to
the carry-passing-block. Implementing that is straightforward.

More information and code can be found in [Campos 06]. Range coding is used in
LZMA (Section 3.24).

2.16 The QM Coder

JPEG (Section 4.8) is an important image compression method. It uses arithmetic
coding, but not in the way described in Section 2.14. The arithmetic coder of JPEG is
called the QM-coder and is described in this section. It is designed for simplicity and
speed, so it is limited to input symbols that are single bits and it uses an approximation
instead of a multiplication. It also uses fixed-precision integer arithmetic, so it has to
resort to renormalization of the probability interval from time to time, in order for
the approximation to remain close to the true multiplication. For more information
on this method, see [IBM 88|, [Pennebaker and Mitchell 88a], and [Pennebaker and
Mitchell 88b)].

A slight confusion arises because the arithmetic coder of JPEG 2000 (Section 5.19)
and JBIG2 (Section 4.12) is called the MQ-coder and is not the same as the QM-coder
(the author is indebted to Christopher M. Brislawn for pointing this out).
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Exercise 2.38: The QM-coder is limited to input symbols that are single bits. Suggest
a way to convert an arbitrary set of symbols to a stream of bits.

The main idea behind the QM-coder is to classify each input symbol (which is a
single bit) as either the more probable symbol (MPS) or the less probable symbol (LPS).
Before the next bit is input, the QM-encoder uses a statistical model to determine
whether a 0 or a 1 is more probable at that point. It then inputs the next bit and
classifies it according to its actual value. If the model predicts, for example, that a 0
is more probable, and the next bit turns out to be a 1, the encoder classifies it as an
LPS. It is important to understand that the only information encoded in the compressed
stream is whether the next bit is MPS or LPS. When the stream is decoded, all that the
decoder knows is whether the bit that has just been decoded is an MPS or an LPS. The
decoder has to use the same statistical model to determine the current relation between
MPS/LPS and 0/1. This relation changes, of course, from bit to bit, since the model is
updated identically (in lockstep) by the encoder and decoder each time a bit is input by
the former or decoded by the latter.

The statistical model also computes a probability Qe for the LPS, so the probability
of the MPS is (1 — Qe). Since Qe is the probability of the less probable symbol, it is in
the range [0,0.5]. The encoder divides the probability interval A into two subintervals
according to Qe and places the LPS subinterval (whose size is Ax Qe) above the MPS
subinterval [whose size is A(1 — Qe)], as shown in Figure 2.61b. Notice that the two
subintervals in the figure are closed at the bottom and open at the top. This should
be compared with the way a conventional arithmetic encoder divides the same interval
(Figure 2.61a, where the numbers are taken from Table 2.48).

Free 1 1075 e Ay Lps
- | subinterval
P A(1-Qe) T ‘ AxQe
T0.5 +0.75 +0.72 0,715 MPS
-+0.,7 subinterval
R R
0 05 ot o 0

Figure 2.61: Division of the Probability Interval.

In conventional arithmetic coding, the interval is narrowed all the time, and the
final output is any number inside the final subinterval. In the QM-coder, for simplicity,
each step adds the bottom of the selected subinterval to the output-so-far. We denote
the output string by C. If the current bit read from the input is the MPS, the bottom
of the MPS subinterval (i.e., the number 0) is added to C. If the current bit is the LPS,
the bottom of the LPS subinterval [i.e., the number A(1 — Qe)] is added to C. After
C' is updated in this way, the current probability interval A is shrunk to the size of the
selected subinterval. The probability interval is always in the range [0, A), and A gets
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smaller at each step. This is the main principle of the QM-encoder, and it is expressed
by the rules

After MPS: C is unchanged, A «— A(1— Qe),

After LPS: C«— C+ A(1 —Qe), A— AxQe. 2.7)
These rules set C' to point to the bottom of the MPS or the LPS subinterval, depending
on the classification of the current input bit. They also set A to the new size of the
subinterval.

Table 2.62 lists the values of A and C' when four symbols, each a single bit, are
encoded. We assume that they alternate between an LPS and an MPS and that Qe = 0.5
for all four steps (normally, of course, the statistical model yields different values of Qe
all the time). It is easy to see how the probability interval A shrinks from 1 to 0.0625,
and how the output C grows from 0 to 0.625. Table 2.64 is similar, but uses Qe = 0.1 for
all four steps. Again A shrinks, to 0.0081, and C' grows, to 0.981. Figures 2.63 and 2.65
illustrate graphically the division of the probability interval A into an LPS and an MPS.

Exercise 2.39: Repeat these calculations for the case where all four symbols are LPS
and Qe = 0.5, then for the case where they are MPS and Qe = 0.1.

The principle of the QM-encoder is simple and easy to understand, but it involves
two problems. The first is the fact that the interval A, which starts at 1, shrinks all
the time and requires high precision to distinguish it from zero. The solution to this
problem is to maintain A as an integer and double it every time it gets too small. This is
called remormalization. It is fast, since it is done by a logical left shift; no multiplication
is needed. Fach time A is doubled, C is also doubled. The second problem is the
multiplication A x Qe used in subdividing the probability interval A. A fast compression
method should avoid multiplications and divisions and should try to replace them with
additions, subtractions, and shifts. It turns out that the second problem is also solved
by renormalization. The idea is to keep the value of A close to 1, so that Qe will not be
very different from the product A x Qe. The multiplication is approzimated by Qe.

How can we use renormalization to keep A close to 17 The first idea that comes
to mind is to double A when it gets just a little below 1, say to 0.9. The problem is
that doubling 0.9 yields 1.8, closer to 2 than to 1. If we let A get below 0.5 before
doubling it, the result will be less than 1. It does not take long to realize that 0.75 is a
good minimum value for renormalization. If A reaches this value at a certain step, it is
doubled, to 1.5. If it reaches a smaller value, such as 0.6 or 0.55, it ends up even closer
to 1 when doubled.

If A reaches a value less than 0.5 at a certain step, it has to be renormalized by
doubling it several times, each time also doubling C. An example is the second row of
Table 2.64, where A shrinks from 1 to 0.1 in one step, because of a very small probability
Qe. In this case, A has to be doubled three times, from 0.1 to 0.2, to 0.4, to 0.8, in
order to bring it into the desired range [0.75,1.5). We conclude that A can go down to
0 (or very close to 0) and can be at most 1.5 (actually, less than 1.5, since our intervals
are always open at the high end).
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Symbol C A

Initially 0 1

sl (LPS) 0+1(1—0.5)=0.5 1%0.5 = 0.5

s2 (MPS) unchanged 0.5x(1—-0.5)=0.25

s3 (LPS) 0.5+ 0.25(1 — 0.5) = 0.625  0.25x0.5 = 0.125

s4 (MPS) unchanged 0.125x (1 — 0.5) = 0.0625

Table 2.62: Encoding Four Symbols With Qe = 0.5.

1 105 025 0125 0.0625

A(1-Qe) + 0254 04251 0.06254<

0 ~lo ~lo o o

Figure 2.63: Division of the Probability Interval.

Symbol C A

Initially 0 1

s1 (LPS) 0+1(1-0.1)=09 1x0.1=0.1

s2 (MPS) unchanged 0.1x(1—-0.1) =0.09

s3 (LPS) 0.9+ 0.09(1 —0.1) =0.981 0.09x0.1 = 0.009

s4 (MPS) unchanged 0.009% (1 —0.1) = 0.0081

Table 2.64: Encoding Four Symbols With Qe = 0.1.

L OR— 01 ... 0.09 ___... 0.009 ... 0.0081
A(1=Qe) T<7777770.09 1577 7770.081 1< 7770.0081T"
0.9 | ™ .
0 N O AN O AN 0 AN O

Figure 2.65: Division of the Probability Interval.
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o Exercise 2.40: In what case does A always have to be renormalized?

Approximating the multiplication A x Qe by Qe changes the main rules of the
QM-encoder to

After MPS: (' is unchanged, A« A(l —Qe) =~ A — Qe,
After LPS: C«— C+A(1—Qe)=C+ A—Qe, A+« AXxQe= Qe.

In order to include renormalization in these rules, we have to choose an integer repre-
sentation for A where real values in the range [0,1.5) are represented as integers. Since
many current and old computers have 16-bit words, it makes sense to choose a repre-
sentation where 0 is represented by a word of 16 zero bits and 1.5 is represented by the
smallest 17-bit number, which is

216 — 65536, = 1000016 = 10...05.
16

This way we can represent 65536 real values in the range [0, 1.5) as 16-bit integers, where
the largest 16-bit integer, 65535, represents a real value slightly less than 1.5. Here are
a few important examples of such values:

0.75 = 1.5/2 = 2'% = 32768, = 800015, 1 = 0.75(4/3) = 4369019 = AAAA;s,
0.5 = 43690/2 = 218459 = 555515, 0.25 = 21845/2 = 109239 = 2AAByg.

(The optimal value of 1 in this representation is AAAA;6, but the way we associate the
real values of A with the 16-bit integers is somewhat arbitrary. The important thing
about this representation is to achieve accurate interval subdivision, and the subdivision
is done by either A «— A — Qe or A «— Qe. The accuracy of the subdivision depends,
therefore, on the relative values of A and Qe, and it has been found experimentally that
the average value of A is B55A14, so this value, instead of AAAA;g, is associated in the
JPEG QM-coder with A = 1. The difference between the two values AAAA and B55A
is ABO1g = 273610. The JBIG QM-coder uses a slightly different value for 1.)
Renormalization can now be included in the main rules of the QM-encoder, which

become

After MPS: C is unchanged, A «— A — Qe,

if A < 800046 renormalize A and C.
After LPS: C +— C+ A—Qe, A« Qe,

renormalize A and C.

(2.8)

Tables 2.66 and 2.67 list the results of applying these rules to the examples shown in
Tables 2.62 and 2.64, respectively.

o Exercise 2.41: Repeat these calculations with renormalization for the case where all
four symbols are LPS and Qe = 0.5. Following this, repeat the calculations for the case
where they are all MPS and Qe = 0.1. (Compare this exercise with Exercise 2.39.)

The next point that has to be considered in the design of the QM-encoder is the
problem of interval inversion. This is the case where the size of the subinterval allocated
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Symbol C A Renor. A Renor. C
Initially 0 1

s1 (LPS) 04+1-05=05 0.5 1 1
s2 (MPS) unchanged 1-05=0.5 1 2
s3 (LPS) 24+1-05=25 0.5 1 5
s4 (MPS) unchanged 1-05=0.5 1 10

Table 2.66: Renormalization Added to Table 2.62.

Symbol c A Renor. A Renor. C
Initially 0 1

sl (LPS) 0+1-0.1=0.9 0.1 0.8 0.9:23 =72
s2 (MPS) unchanged 7.2 0.8—-0.1=0.7 1.4 7.2:2=144
s3 (LPS) 144+14-01=157 0.1 0.8 15.7-23 =125.6
s4 (MPS) unchanged 0.8—-0.1=0.7 1.4 125.6-2 = 251.2

Table 2.67: Renormalization Added to Table 2.64.

to the MPS becomes smaller than the LPS subinterval. This problem may occur when
Qe is close to 0.5 and is a result of the approximation to the multiplication. It is
illustrated in Table 2.68, where four MPS symbols are encoded with Qe = 0.45. In the
third row of the table the interval A is doubled from 0.65 to 1.3. In the fourth row it
is reduced to 0.85. This value is greater than 0.75, so no renormalization takes place;
yet the subinterval allocated to the MPS becomes A — Qe = 0.85 — 0.45 = 0.40, which
is smaller than the LPS subinterval, which is Qe = 0.45. Clearly, the problem occurs
when Qe > A/2, a relation that can also be expressed as Qe > A — Qe.

Symbol C A  Renor. A Renor. C
Initially 0 1
sl (MPS) 0 1-0.45=0.55 1.1 0
s2 (MPS) 0 1.1 —-0.45=0.65 1.3 0
s3 (MPS) 0 1.3—-0.45=0.85
s4 (MPS) 0 0.85—0.45=0.40 0.8 0

Table 2.68: lllustrating Interval Inversion.

The solution is to interchange the two subintervals whenever the LPS subinterval
becomes greater than the MPS subinterval. This is called conditional exchange. The
condition for interval inversion is Qe > A — Qe, but since Qe < 0.5, we get A — Qe <
Qe < 0.5, and it becomes obvious that both Qe and A — Qe (i.e., both the LPS and
MPS subintervals) are less than 0.75, so renormalization must take place. This is why
the test for conditional exchange is performed only after the encoder has decided that
renormalization is needed. The new rules for the QM-encoder are shown in Figure 2.69.

— >
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After MPS:
C is unchanged
A— A—Qe; % The MPS subinterval
if A < 8000:¢ then J% if renormalization needed
if A < Qe then % if inversion needed
C—C+A; % point to bottom of LPS
A — Qe % Set A to LPS subinterval
endif;
renormalize A and C;
endif;
After LPS:
A— A—Qe; % The MPS subinterval
if A > Qe then % if interval sizes not inverted
C—C+ A; % point to bottom of LPS
A — Qe % Set A to LPS subinterval
endif;

renormalize A and C;

Figure 2.69: QM-Encoder Rules With Interval Inversion.

The QM-Decoder: The QM-decoder is the reverse of the QM-encoder. For sim-
plicity we ignore renormalization and conditional exchange, and we assume that the
QM-encoder operates by the rules of Equation (2.7). Reversing the way C' is updated in
those rules yields the rules for the QM-decoder (the interval A is updated in the same
way):

After MPS: C is unchanged, A — A(1— Qe),

2.9
After LPS: C «— C — A(1—Qe), A— AxQe. (2:9)

These rules are demonstrated using the data of Table 2.62. The four decoding steps are
as follows:

Step 1: C'=0.625, A = 1, the dividing line is A(1 — Qe) = 1(1 — 0.5) = 0.5, so the LPS
and MPS subintervals are [0,0.5) and [0.5,1). Since C' points to the upper subinterval,
an LPS is decoded. The new C'is 0.625—1(1—0.5) = 0.125 and the new Ais 1x0.5 = 0.5.
Step 2: C'=0.125, A = 0.5, the dividing line is A(1 — Qe) = 0.5(1 — 0.5) = 0.25, so the
LPS and MPS subintervals are [0,0.25) and [0.25,0.5), and an MPS is decoded. C' is
unchanged, and the new A is 0.5(1 — 0.5) = 0.25.

Step 3: C = 0.125, A = 0.25, the dividing line is A(1 — Qe) = 0.25(1 — 0.5) = 0.125, so
the LPS and MPS subintervals are [0,0.125) and [0.125,0.25), and an LPS is decoded.
The new C'is 0.125 — 0.25(1 — 0.5) = 0, and the new A is 0.25 x 0.5 = 0.125.

Step 4: C =0, A = 0.125, the dividing line is A(1 — Qe) = 0.125(1 — 0.5) = 0.0625,
so the LPS and MPS subintervals are [0,0.0625) and [0.0625,0.125), and an MPS is
decoded. C is unchanged, and the new A is 0.125(1 — 0.5) = 0.0625.

Exercise 2.42: Use the rules of Equation (2.9) to decode the four symbols encoded in
Table 2.64.
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Probability Estimation: The QM-encoder uses a novel, interesting, and little-
understood method for estimating the probability Qe of the LPS. The first method that
comes to mind in trying to estimate the probability of the next input bit is to initialize
Qe to 0.5 and update it by counting the numbers of zeros and ones that have been
input so far. If, for example, 1000 bits have been input so far, and 700 of them were
zeros, then 0 is the current MPS, with probability 0.7, and the probability of the LPS
is Qe = 0.3. Notice that Qe should be updated before the next input bit is read and
encoded, since otherwise the decoder would not be able to mirror this operation (the
decoder does not know what the next bit is). This method produces good results, but is
slow, since Qe should be updated often (ideally, for each input bit), and the calculation
involves a division (dividing 700/1000 in our example).

The method used by the QM-encoder is based on a table of preset Qe values. Qe is
initialized to 0.5 and is modified when renormalization takes place, not for every input
bit. Table 2.70 illustrates the process. The Qe index is initialized to zero, so the first
value of Qe is 0AC114 or very close to 0.5. After the first MPS renormalization, the
Qe index is incremented by 1, as indicated by column “Incr MPS.” A Qe index of 1
implies a Qe value of 0A8114 or 0.49237, slightly smaller than the original, reflecting the
fact that the renormalization occurred because of an MPS. If, for example, the current
Qe index is 26, and the next renormalization is LPS, the index is decremented by 3, as
indicated by column “Decr LPS,” reducing Qe to 0.00421. The method is not applied
very often, and it involves only table lookups and incrementing or decrementing the Qe
index: fast, simple operations.

Qe Hex  Dec Decr Incr MPS Qe Hex Dec Decr Incr MPS
index Qe Qe LPS MPS exch index Qe Qe LPS MPS exch

0 0AC1 0.50409 O 1 1 15 0181 0.07050 2 1 0
1 0AS81 0.49237 1 1 0 16 0121 0.05295 2 1 0
2 0A01 0.46893 1 1 0 17 O00E1 0.04120 2 1 0
3 0901 0.42206 1 1 0 18 00A1 0.02948 2 1 0
4 0701 0.32831 1 1 0 19 0071 0.02069 2 1 0
5 0681 0.30487 1 1 0 20 0059 0.01630 2 1 0
6 0601 0.28143 1 1 0 21 0053 0.01520 2 1 0
7 0501 0.23456 2 1 0 22 0027 0.00714 2 1 0
8 0481 0.21112 2 1 0 23 0017 0.00421 2 1 0
9 0441 0.19940 2 1 0 24 0013 0.00348 3 1 0
10 0381 0.16425 2 1 0 25 000B 0.00201 2 1 0
11 0301 0.14081 2 1 0 26 0007 0.00128 3 1 0
12 02C1 0.12909 2 1 0 27 0005 0.00092 2 1 0
13 0281 0.11737 2 1 0 28 0003 0.00055 3 1 0
14 0241 0.10565 2 1 0 29 0001 0.00018 2 0 0

Table 2.70: Probability Estimation Table (Illustrative).

The column labeled “MPS exch” in Table 2.70 contains the information for the
conditional exchange of the MPS and LPS definitions at Qe = 0.5. The zero value at
the bottom of column “Incr MPS” should also be noted. If the Qe index is 29 and an
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MPS renormalization occurs, this zero causes the index to stay at 29 (corresponding to
the smallest Qe value).

Table 2.70 is used here for illustrative purposes only. The JPEG QM-encoder uses
Table 2.71, which has the same format but is harder to understand, since its Qe values
are not listed in sorted order. This table was prepared using probability estimation
concepts based on Bayesian statistics.

We now justify this probability estimation method with an approximate calculation
that suggests that the Qe values obtained by this method will adapt to and closely
approach the correct LPS probability of the binary input stream. The method updates
Qe each time a renormalization occurs, and we know, from Equation (2.8), that this
happens every time an LPS is input, but not for all MPS values. We therefore imagine
an ideal balanced input stream where for each LPS bit there is a sequence of consecutive
MPS bits. We denote the true (but unknown) LPS probability by ¢, and we try to show
that the Qe values produced by the method for this ideal case are close to gq.

Equation (2.8) lists the main rules of the QM-encoder and shows how the probability
interval A is decremented by Qe each time an MPS is input and encoded. Imagine a
renormalization that brings A to a value A; (between 1 and 1.5), followed by a sequence
of N consecutive MPS bits that reduce A in steps of Qe from A; to a value A, that
requires another renormalization (i.e., As is less than 0.75). It is clear that

AA
=%

where AA = A; — As. Since ¢ is the true probability of an LPS, the probability of
having N MPS bits in a row is P = (1 — ¢)". This implies In P = N In(1 — ¢), which,
for a small ¢, can be approximated by

AA AA
InP~ N(—q) = —@q, or P = exp (_Qeq) . (2.10)

Since we are dealing with an ideal balanced input stream, we are interested in the value
P = 0.5, because it implies equal numbers of LPS and MPS renormalizations. From
P =0.5 we get In P = —In 2, which, when combined with Equation (2.10), yields

AA

Qe = mq

This is fortuitous because In2 =~ 0.693 and AA is typically a little less than 0.75. We
can say that for our ideal balanced input stream, Qe = ¢, providing one justification for
our estimation method. Another justification is provided by the way P depends on Qe
[shown in Equation (2.10)]. If Qe gets larger than ¢, P also gets large, and the table
tends to move to smaller Qe values. In the opposite case, the table tends to select larger
Qe values.
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Qe  Hex Next-Index MPS Qe Hex Next-Index MPS
index Qe LPS MPS exch index Qe LPS MPS exch

0 5A1D 1 1 57 01A4 55 58
1 2586 14 2 58 0160 56 59
2 1114 16 3 59 0125 57 60
3 080B 18 4 60 OO0F6 58 61
4 03D8 20 5 61 00CB 59 62
5 01DA 23 6 62 00AB 61 63
6 O00E5 25 7 63 008F 61 32
7 006F 28 8 64 5B12 65 65
8 0036 30 9 65 4D04 80 66
9 001A 33 10 66 412C 81 67
10 000D 35 11 67 37D8 82 68
11 0006 9 12 68 2FE8 83 69
12 0003 10 13 69 293C 84 70
13 0001 12 13 70 2379 86 71
14 B5ATF 15 15 71 1EDF 87 72
15 3F25 36 16 72 1AA9 87 73
16 2CF2 38 17 73 174E 72 74
17 207C 39 18 74 1424 72 75
18 17B9 40 19 75 119C 74 76
19 1182 42 20 76 0F6B 74 7
20 OCEF 43 21 77 0D51 75 78
21 09A1 45 22 78 0BB6 77 79

22 072F 46 23 79 0A40 77 48
23 055C 48 24 80 5832 80 81
24 0406 49 25 81 4D1C 88 82
25 0303 51 26 82 438E 89 83
26 0240 52 27 83 3BDD 90 84
27 01B1 54 28 84 34EE 91 85
28 0144 56 29 85 2EAE 92 86
29 O00F5 57 30 86 299A 93 87
30 00B7 59 31 87 2516 86 71
31 008A 60 32 88 5570 88 89
32 0068 62 33 89 4CA9 95 90
33 004E 63 34 90 44D9 96 91
34 003B 32 35 91 3E22 97 92
35 002C 33 9 92 3824 99 93
36 5AEl1 37 37 93 32B4 99 94
37 484C 64 38 94 2E17 93 86
38 3A0D 65 39 95 56A8 95 96

39 2EF1 67 40 96 4F46 101 97
40 261F 68 41 97 47E5 102 98
41 1F33 69 42 98 41CF 103 99
42 19A8 70 43 99 3C3D 104 100
43 1518 72 44 100 375E 99 93
44 1177 73 45 101 5231 105 102
45 O0E74 74 46 102 4COF 106 103
46 OBFB 75 47 103 4639 107 104
47 09F8 77 48 104 415E 103 99
48 0861 78 49 105 5627 105 106
49 0706 79 50 106 S50E7 108 107

(@]
[en}

05CD 48 51
04DE 50 52
040F 50 53
0363 51 54
02D4 52 55
025C 53 56
01F8 54 57

107 4B85 109 103
108 5597 110 109
109 504F 111 107
110 5A10 110 111
111 5522 112 109
112 59EB 112 111
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—
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Table 2.71: The QM-Encoder Probability Estimation Table.
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2.17 Text Compression

Before delving into the details of the next method, here is a general discussion of text
compression. Most text compression methods are either statistical or dictionary based.
The latter class breaks the text into fragments that are saved in a data structure called a
dictionary. When a fragment of new text is found to be identical to one of the dictionary
entries, a pointer to that entry is written on the compressed stream, to become the
compression of the new fragment. The former class, on the other hand, consists of
methods that develop statistical models of the text.

A common statistical method consists of a modeling stage followed by a coding
stage. The model assigns probabilities to the input symbols, and the coding stage
actually codes the symbols based on those probabilities. The model can be static or
dynamic (adaptive). Most models are based on one of the following two approaches.

Frequency: The model assigns probabilities to the text symbols based on their
frequencies of occurrence, such that commonly occurring symbols are assigned short
codes. A static model uses fixed probabilities, whereas a dynamic model modifies the
probabilities “on the fly” while text is being input and compressed.

Context: The model considers the context of a symbol when assigning it a proba-
bility. Since the decoder does not have access to future text, both encoder and decoder
must limit the context to past text, i.e., to symbols that have already been input and
processed. In practice, the context of a symbol is the N symbols preceding it. We there-
fore say that a context-based text compression method uses the context of a symbol to
predict it (i.e., to assign it a probability). Technically, such a method is said to use an
“order-N” Markov model. The PPM method, Section 2.18, is an excellent example of
a context-based compression method, although the concept of context can also be used
to compress images.

Some modern context-based text compression methods perform a transformation
on the input data and then apply a statistical model to assign probabilities to the trans-
formed symbols. Good examples of such methods are the Burrows-Wheeler method,
Section 8.1, also known as the Burrows-Wheeler transform, or block sorting; the tech-
nique of symbol ranking, Section 8.2; and the ACB method, Section 8.3, which uses an
associative dictionary.

2.18 PPM

The PPM method is a sophisticated, state of the art compression method originally
developed by J. Cleary and I. Witten [Cleary and Witten 84], with extensions and an
implementation by A. Moffat [Moffat 90]. The method is based on an encoder that
maintains a statistical model of the text. The encoder inputs the next symbol S, assigns
it a probability P, and sends S to an adaptive arithmetic encoder, to be encoded with
probability P.

The simplest statistical model counts the number of times each symbol has occurred
in the past and assigns the symbol a probability based on that. Assume that 1217
symbols have been input and encoded so far, and 34 of them were the letter q. If the
next symbol is a q, it is assigned a probability of 34/1217 and its count is incremented
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by 1. The next time q is seen, it will be assigned a probability of 35/t, where t is the
total number of symbols input up to that point (not including the last q).

The next model up is a context-based statistical model. The idea is to assign a
probability to symbol S depending not just on the frequency of the symbol but on the
contexts in which it has occurred so far. The letter h, for example, occurs in “typical”
English text (Table Intro.1) with a probability of about 5%. On average, we expect to
see an h about 5% of the time. However, if the current symbol is t, there is a high
probability (about 30%) that the next symbol will be h, since the digram th is common
in English. We say that the model of typical English predicts an h in such a case. If
the next symbol is in fact h, it is assigned a large probability. In cases where an h is
the second letter of an unlikely digram, say xh, the h is assigned a smaller probability.
Notice that the word “predicts” is used here to mean “estimate the probability of.”
A similar example is the letter u, which has a probability of about 2%. When a q is
encountered, however, there is a probability of more than 99% that the next letter will
be a u.

Exercise 2.43: We know that in English, a q must be followed by a u. Why not just
say that the probability of the digram qu is 100%?

A static context-based modeler always uses the same probabilities. It contains static
tables with the probabilities of all the possible digrams (or trigrams) of the alphabet and
uses the tables to assign a probability to the next symbol S depending on the symbol
(or, in general, on the context) C' preceding it. We can imagine S and C being used
as indices for a row and a column of a static frequency table. The table itself can be
constructed by accumulating digram or trigram frequencies from large quantities of text.
Such a modeler is simple and produces good results on average, but has two problems.
The first is that some input streams may be statistically very different from the data
originally used to prepare the table. A static encoder may create considerable expansion
in such a case. The second problem is zero probabilities.

What if after reading and analyzing huge amounts of English text, we still have never
encountered the trigram qqz? The cell corresponding to qqz in the trigram frequency
table will contain zero. The arithmetic encoder, Sections 2.14 and 2.15, requires all
symbols to have nonzero probabilities. Even if a different encoder, such as Huffman, is
used, all the probabilities involved must be nonzero. (Recall that the Huffman method
works by combining two low-probability symbols into one high-probability symbol. If
two zero-probability symbols are combined, the resulting symbol will have the same zero
probability.) Another reason why a symbol must have nonzero probability is that its
entropy (the smallest number of bits into which it can be encoded) depends on log, P,
which is undefined for P = 0 (but gets very large when P — 0). This zero-probability
problem faces any model, static or adaptive, that uses probabilities of occurrence of
symbols to achieve compression. T'wo simple solutions are traditionally adopted for this
problem, but neither has any theoretical justification.

1. After analyzing a large quantity of data and counting frequencies, go over the fre-
quency table, looking for empty cells. Each empty cell is assigned a frequency count
of 1, and the total count is also incremented by 1. This method pretends that every
digram and trigram has been seen at least once.

2. Add 1 to the total count and divide this single 1 among all the empty cells. Each
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will get a count that’s less than 1 and, as a result, a very small probability. This assigns
a very small probability to anything that hasn’t been seen in the training data used for
the analysis.

An adaptive context-based modeler also maintains tables with the probabilities of
all the possible digrams (or trigrams or even longer contexts) of the alphabet and uses
the tables to assign a probability to the next symbol S depending on a few symbols im-
mediately preceding it (its context C'). The tables are updated all the time as more data
is being input, which adapts the probabilities to the particular data being compressed.

Such a model is slower and more complex than the static one but produces better
compression, since it uses the correct probabilities even when the input has data with
probabilities much different from the average.

A text that skews letter probabilities is called a lipogram. (Would a computer
program without any goto statements be considered a lipogram?) The word comes
from the Greek stem Ae/mw (lipo or leipo) meaning to miss, to lack, combined with
the Greek ypdppa (gramma), meaning “letter” or “of letters.” Together they form
Amoypapparoo. There are not many examples of literary works that are lipograms:

1. Perhaps the best-known lipogram in English is Gadsby, a full-length novel [Wright 39],
by Ernest V. Wright, that does not contain any occurrences of the letter E.

A Quotation from the Preface to Gadsby

People as a rule will not stop to realize what a task such an attempt
actually is. As I wrote along, in long-hand at first, a whole army of little
E’s gathered around my desk, all eagerly expecting to be called upon. But
gradually as they saw me writing on and on, without even noticing them, they
grew uneasy; and, with excited whisperings among themselves, began hopping
up and riding on my pen, looking down constantly for a chance to drop off
into some word; for all the world like sea birds perched, watching for a passing
fish! But when they saw that I had covered 138 pages of typewriter size paper,
they slid off unto the floor, walking sadly away, arm in arm; but shouting back:
“You certainly must have a hodge-podge of a yarn there without Us! Why,
man! We are in every story ever written, hundreds and thousands of times!
This is the first time we ever were shut out!”

—FErnest V. Wright

2. Alphabetical Africa by Walter Abish (W. W. Norton, 1974) is a readable lipogram
where the reader is supposed to discover the unusual writing style while reading. This
style has to do with the initial letters of words. The book consists of 52 chapters. In the
first, all words begin with a; in the second, words start with either a or b, etc., until, in
Chapter 26, all letters are allowed at the start of a word. In the remaining 26 chapters,
the letters are taken away one by one. Various readers have commented on how little
or how much they have missed the word “the” and how they felt on finally seeing it (in
Chapter 20).
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3. The novel La Disparition is a 1969 French lipogram by Georges Perec that does not
contain the letter E (this letter actually appears several times, outside the main text, in
words that the publisher had to include, and these are all printed in red). La Disparition
has been translated to English, where it is titled A Void, by Gilbert Adair. Perec also
wrote a univocalic (text employing just one vowel) titled Les Revenentes (the revenents)
employing only the vowel E. The title of the English translation (by Ian Monk) is The
Exeter Text, Jewels, Secrets, Sex. (Perec also wrote a short history of lipograms; see
[Motte 98].)

4. Gottlob Burmann, a German poet, created our next example of a lipogram. He wrote
130 poems, consisting of about 20,000 words, without the use of the letter R. It is also
believed that during the last 17 years of his life, he even omitted this letter from his
daily conversation.

5. A Portuguese lipogram is found in five stories written by Alonso Alcala y Herrera, a
Portuguese writer, in 1641, each suppressing one vowel.

6. Other examples, in Spanish, are found in the writings of Francisco Navarrete y Ribera
(1659), Fernando Jacinto de Zurita y Haro (1654), and Manuel Lorenzo de Lizarazu y
Berbinzana (also 1654).

An order-N adaptive context-based modeler reads the next symbol S from the input
stream and considers the IV symbols preceding S the current order-N context C' of S.
The model then estimates the probability P that S appears in the input data following
the particular context C'. Theoretically, the larger N, the better the probability estimate
(the prediction). To get an intuitive feeling, imagine the case N = 20,000. It is hard
to imagine a situation where a group of 20,000 symbols in the input stream is followed
by a symbol S, but another group of the same 20,000 symbols, found later in the same
input stream, is followed by a different symbol. Thus, N = 20,000 allows the model to
predict the next symbol (to estimate its probability) with high accuracy. However, large
values of N have three disadvantages:

I pounded the keys so hard that night that the letter e flew off the part of
the machine that hits the paper. Not wanting to waste the night, I went next
door to a neighbor who, I knew, had an elaborate workshop in his cellar. He
attempted to solder my e back, but when I started to work again, it flew off like
a bumblebee. For the rest of the night I inserted each e by hand, and in the
morning I took the last dollars from our savings account to buy a new typewriter.
Nothing could be allowed to delay the arrival of my greatest triumph.

—Sloan Wilson, What Shall We Wear to This Party, (1976)

1. If we encode a symbol based on the 20,000 symbols preceding it, how do we encode
the first 20,000 symbols in the input stream? They may have to be written on the output
stream as raw ASCII codes, thereby reducing the overall compression.

2. For large values of N, there may be too many possible contexts. If our symbols
are the 7-bit ASCII codes, the alphabet size is 27 = 128 symbols. There are therefore
1282 = 16,384 order-2 contexts, 1283 = 2,097,152 order-3 contexts, and so on. The
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number of contexts grows exponentially, since it is 128" or, in general, AV, where A is
the alphabet size.

Exercise 2.44: What is the number of order-2 and order-3 contexts for an alphabet of
size 28 = 2567

Exercise 2.45: What would be a practical example of a 16-symbol alphabet?

3. A very long context retains information about the nature of old data. Experience
shows that large data files contain different distributions of symbols in different parts
(a good example is a history book, where one chapter may commonly use words such
as “Greek,” “Athens,” and “Troy,” while the following chapter may use “Roman,” “em-
pire,” and “legion”). Better compression can therefore be achieved if the model assigns
less importance to information collected from old data and more weight to fresh, recent

data. Such an effect is achieved by a short context.

Exercise 2.46: Show an example of a common binary file where different parts may
have different bit distributions.

As a result, relatively short contexts, in the range of 2 to 10, are used in practice.
Any practical algorithm requires a carefully designed data structure that provides fast
search and easy update, while holding many thousands of symbols and strings (Sec-
tion 2.18.5).

We now turn to the next point in the discussion. Assume a context-based encoder
that uses order-3 contexts. Early in the compression process, the word here was seen
several times, but the word there is now seen for the first time. Assume that the next
symbol is the r of there. The encoder will not find any instances of the order-3 context
the followed by r (the r has 0 probability in this context). The encoder may simply
write r on the compressed stream as a literal, resulting in no compression, but we know
that r was seen several times in the past following the order-2 context he (r has nonzero
probability in this context). The PPM method takes advantage of this knowledge.

“uvulapalatopharangoplasty” is the name of a surgical procedure to correct sleep
apnea. It is rumored to be the longest (English?) word without any e’s.

2.18.1 PPM Principles

The central idea of PPM is to use this knowledge. The PPM encoder switches to a
shorter context when a longer one has resulted in 0 probability. Thus, PPM starts
with an order-N context. It searches its data structure for a previous occurrence of
the current context C' followed by the next symbol S. If it finds no such occurrence
(i.e., if the probability of this particular C followed by this S is 0), it switches to order
N — 1 and tries the same thing. Let C’ be the string consisting of the rightmost N — 1
symbols of C. The PPM encoder searches its data structure for a previous occurrence
of the current context C’ followed by symbol S. PPM therefore tries to use smaller and
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smaller parts of the context C, which is the reason for its name. The name PPM stands
for “prediction with partial string matching.” Here is the process in some detail.

The encoder reads the next symbol S from the input stream, looks at the current
order-N context C' (the last N symbols read), and based on input data that has been
seen in the past, determines the probability P that S will appear following the particular
context C. The encoder then invokes an adaptive arithmetic coding algorithm to encode
symbol S with probability P. In practice, the adaptive arithmetic encoder is a proce-
dure that receives the quantities HighCumFreq[X] and LowCumFreq[X] (Section 2.15) as
parameters from the PPM encoder.

As an example, suppose that the current order-3 context is the string the, which has
already been seen 27 times in the past and was followed by the letters r (11 times), s (9
times), n (6 times), and m (just once). The encoder assigns these cases the probabilities
11/27, 9/27, 6/27, and 1/27, respectively. If the next symbol read is r, it is sent to
the arithmetic encoder with a probability of 11/27, and the probabilities are updated to
12/28,9/28, 6/28, and 1/28.

What if the next symbol read is a? The context the was never seen followed by an
a, so the probability of this case is 0. This zero-probability problem is solved in PPM
by switching to a shorter context. The PPM encoder asks; How many times was the
order-2 context he seen in the past and by what symbols was it followed? The answer
may be as follows: Seen 54 times, followed by a (26 times), by r (12 times), etc. The
PPM encoder now sends the a to the arithmetic encoder with a probability of 26/54.

If the next symbol S was never seen before following the order-2 context he, the
PPM encoder switches to order-1 context. Was S seen before following the string e?
If yes, a nonzero probability is assigned to S depending on how many times it (and
other symbols) was seen following e. Otherwise, the PPM encoder switches to order-0
context. It asks itself how many times symbol S was seen in the past, regardless of any
contexts. If it was seen 87 times out of 574 symbols read, it is assigned a probability of
87/574. If the symbol S has never been seen before (a common situation at the start of
any compression process), the PPM encoder switches to a mode called order —1 context,
where S is assigned the fixed probability 1/(size of the alphabet).

To predict is one thing. To predict correctly is another.

—Unknown

Table 2.72 shows contexts and frequency counts for orders 4 through 0 after the 11-
symbol string xyzzxyxyzzx has been input and encoded. To understand the operation
of the PPM encoder, let’s assume that the 12th symbol is z. The order-4 context is
now yzzx, which earlier was seen followed by y but never by z. The encoder therefore
switches to the order-3 context, which is zzx, but even this hasn’t been seen earlier
followed by z. The next lower context, zx, is of order 2, and it also fails. The encoder
then switches to order 1, where it checks context x. Symbol x was found three times in
the past but was always followed by y. Order 0 is checked next, where z has a frequency
count of 4 (out of a total count of 11). Symbol z is therefore sent to the adaptive
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Order 4 Order 3 Order 2 Order 1 Order 0
Xyzz—x 2 xXyz—z 2 xy—z 2 x—y 3 x 4
yzzx—y 1 yzz—Xx 2 —x 1 y—z 2 y 3
zzxy—Xx 1 zzx—y 1 yz—z 2 —x 1 z 4
zxyx—y 1 zxy—x 1 ZZ—X 2 z—z 2
xyxy—z 1 xyx—y 1 zx—y 1 —x 2
yxyz—z 1 yxy—z 1 yx—y 1

(a)

Order 4 Order 3 Order 2 Order 1 Order 0
Xyzz—x 2 Xyz—z 2 Xy—z 2 x—y 3 x 4
yzzx—y 1 yzz—Xx 2 xy—x 1 —z 1 y 3

—z 1 zzx—y 1 yz—z 2 y—z 2 z 5
zzxy—x 1 —z 1 zZz—X 2 —x 1
zxyx—y 1 zxy—x 1 zx—y 1 z—z 2
xyxy—z 1 xyx—y 1 —z 1 —x 2
yxyz—z 1 yxy—z 1 yx—y 1

Table 2.72: (a) Contexts and Counts for “xyzzxyxyzzx'. (b) Updated
After Another z Is Input.

arithmetic encoder, to be encoded with probability 4/11 (the PPM encoder “predicts”
that it will appear 4/11 of the time).

Next, we consider the PPM decoder. There is a fundamental difference between
the way the PPM encoder and decoder work. The encoder can always look at the next
symbol and base its next step on what that symbol is. The job of the decoder is to find
out what the next symbol is. The encoder decides to switch to a shorter context based
on what the next symbol is. The decoder cannot mirror this, since it does not know
what the next symbol is. The algorithm needs an additional feature that will make it
possible for the decoder to stay in lockstep with the encoder. The feature used by PPM
is to reserve one symbol of the alphabet as an escape symbol. When the encoder decides
to switch to a shorter context, it first writes the escape symbol (arithmetically encoded)
on the output stream. The decoder can decode the escape symbol, since it is encoded
in the present context. After decoding an escape, the decoder also switches to a shorter
context.

The worst that can happen with an order-N encoder is to encounter a symbol S for
the first time (this happens mostly at the start of the compression process). The symbol
hasn’t been seen before in any context, not even in order-0 context (i.e., by itself). In
such a case, the encoder ends up sending N + 1 consecutive escapes to be arithmetically
encoded and output, switching all the way down to order —1, followed by the symbol
S encoded with the fixed probability 1/(size of the alphabet). Since the escape symbol
may be output many times by the encoder, it is important to assign it a reasonable
probability. Initially, the escape probability should be high, but it should drop as more
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symbols are input and decoded and more information is collected by the modeler about
contexts in the particular data being compressed.

Exercise 2.47: The escape is just a symbol of the alphabet, reserved to indicate a
context switch. What if the data uses every symbol in the alphabet and none can be
reserved? A common example is image compression, where a pixel is represented by a
byte (256 grayscales or colors). Since pixels can have any values between 0 and 255,
what value can be reserved for the escape symbol in this case?

Table 2.73 shows one way of assigning probabilities to the escape symbol (this is
variant PPMC of PPM). The table shows the contexts (up to order 2) collected while
reading and encoding the 14-symbol string assanissimassa. (In the movie “8 1/2,”
Italian children employ this string as a magic spell. They pronounce it assa-neesee-
massa.) We assume that the alphabet consists of the 26 letters, the blank space, and the
escape symbol, a total of 28 symbols. The probability of a symbol in order —1 is therefore
1/28. Notice that it takes 5 bits to encode 1 of 28 symbols without compression.

Each context seen in the past is placed in the table in a separate group together
with the escape symbol. The order-2 context as, e.g., was seen twice in the past and
was followed by s both times. It is assigned a frequency of 2 and is placed in a group
together with the escape symbol, which is assigned frequency 1. The probabilities of as
and the escape in this group are therefore 2/3 and 1/3, respectively. Context ss was
seen three times, twice followed by a and once by i. These two occurrences are assigned
frequencies 2 and 1 and are placed in a group together with the escape, which is now
assigned frequency 2 (because it is in a group of 2 members). The probabilities of the
three members of this group are therefore 2/5, 1/5, and 2/5, respectively.

The justification for this method of assigning escape probabilities is the following:
Suppose that context abc was seen ten times in the past and was always followed by
x. This suggests that the same context will be followed by the same x in the future, so
the encoder will only rarely have to switch down to a lower context. The escape symbol
can therefore be assigned the small probability 1/11. However, if every occurrence of
context abc in the past was followed by a different symbol (suggesting that the data
varies a lot), then there is a good chance that the next occurrence will also be followed
by a different symbol, forcing the encoder to switch to a lower context (and thus to emit
an escape) more often. The escape is therefore assigned the higher probability 10/20.

Exercise 2.48: Explain the numbers 1/11 and 10/20.

Order 0 consists of the five different symbols asnim seen in the input string, followed
by an escape, which is assigned frequency 5. Thus, probabilities range from 4/19 (for a)
to 5/19 (for the escape symbol).

Wall Street indexes predicted nine out of the last five recessions.
—Paul A. Samuelson, Newsweek (19 September 1966)

2.18.2 Examples

We are now ready to look at actual examples of new symbols being read and encoded.
We assume that the 14-symbol string assanissimassa has been completely input and
encoded, so the current order-2 context is “sa”. Here are four typical cases:
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Order 2 Order 1 Order 0
Context f p Context f p Symbol f p
as—s 2 2/3 a— s 2 2/5 a 4 4/19
esc 1 1/3 a— n 1 1/5 S 6 6/19

esc— 2 2/5 n 1 1/19
ss—a 2 2/5 i 2 2/19
ss—i 1 1/5 s— s 3 3/9 m 1 1/19
esc 2 2/5 s— 2 2/9 esc 5 5/19
s— i 1 1/9
sa—n 1 1/2 esc 3 3/9
esc 1 1/2
n— i 1 1/2
an—i 1 1/2 esc 1 1/2
esc 1 1/2
i—» s 1 1/4
ni—s 1 1/2 i— 1 1/4
esc 1 1/2 esc 2 2/4
is—s 1 1/2 n— a 1 1/2
esc 1 1/2 esc 1 1/2
si—om 1 1/2
esc 1 1/2

im—a 1 1/2
esc 1 1/2

ma—s 1 1/2
esc 1 1/2

Table 2.73: Contexts, Counts (f) and Probabilities (p) for “as-
sanissimassa’.

1. The next symbol is n. The PPM encoder finds that sa followed by n has been seen
before and has probability 1/2. The n is encoded by the arithmetic encoder with this
probability, which takes, since arithmetic encoding normally compresses at or close to
the entropy, —log,(1/2) =1 bit.

2. The next symbol is s. The PPM encoder finds that sa was not seen before followed by
an s. The encoder therefore sends the escape symbol to the arithmetic encoder, together
with the probability (1/2) predicted by the order-2 context of sa. It therefore takes 1
bit to encode this escape. Switching down to order 1, the current context becomes a,
and the PPM encoder finds that an a followed by an s was seen before and currently has
probability 2/5 assigned. The s is then sent to the arithmetic encoder to be encoded
with probability 2/5, which produces another 1.32 bits. In total, 1 4+ 1.32 = 2.32 bits
are generated to encode the s.

3. The next symbol is m. The PPM encoder finds that sa was never seen before followed
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by an m. It therefore sends the escape symbol to the arithmetic encoder, as in Case 2,
generating 1 bit so far. It then switches to order 1, finds that a has never been seen
followed by an m, so it sends another escape symbol, this time using the escape probability
for the order-1 a, which is 2/5. This is encoded in 1.32 bits. Switching to order 0,
the PPM encoder finds m, which has probability 1/19 and sends it to be encoded in
—log,(1/19) = 4.25 bits. The total number of bits produced is thus 14+1.32+4.25 = 6.57.
4. The next symbol is d. The PPM encoder switches from order 2 to order 1 to order
0, sending two escapes as in Case 3. Since d hasn’t been seen before, it is not found in
order 0, and the PPM encoder switches to order —1 after sending a third escape with
the escape probability of order 0, of 5/19 (this produces —log,(5/19) = 1.93 bits). The
d itself is sent to the arithmetic encoder with its order —1 probability, which is 1/28,
so it gets encoded in 4.8 bits. The total number of bits necessary to encode this first d
is 14+ 1.32+ 1.93 + 4.8 = 9.05, more than the five bits that would have been necessary
without any compression.

Exercise 2.49: Suppose that Case 4 has actually occurred (i.e., the 15th symbol to be
input was a d). Show the new state of the order-0 contexts.

Exercise 2.50: Suppose that Case 4 has actually occurred and the 16th symbol is also
a d. How many bits would it take to encode this second d?

Exercise 2.51: Show how the results of the above four cases are affected if we assume
an alphabet size of 256 symbols.

2.18.3 Exclusion

When switching down from order 2 to order 1, the PPM encoder can use the information
found in order 2 in order to exclude certain order-1 cases that are now known to be
impossible. This increases the order-1 probabilities and thereby improves compression.
The same thing can be done when switching down from any order. Here are two detailed
examples.

In Case 2, the next symbol is s. The PPM encoder finds that sa was seen before
followed by n but not by s. The encoder sends an escape and switches to order 1. The
current context becomes a, and the encoder checks to see whether an a followed by an
s was seen before. The answer is yes (with frequency 2), but the fact that sa was seen
before followed by n implies that the current symbol cannot be n (if it were, it would be
encoded in order 2).

The encoder can therefore exclude the case of an a followed by n in order-1 contexts
[we can say that there is no need to reserve “room” (or “space”) for the probability of
this case, since it is impossible]. This reduces the total frequency of the order-1 group
“a—” from 5 to 4, which increases the probability assigned to s from 2/5 to 2/4. Based
on our knowledge from order 2, the s can now be encoded in —log,(2/4) = 1 bit instead
of 1.32 (a total of two bits is produced, since the escape also requires 1 bit).

Another example is Case 4, modified for exclusions. When switching from order 2
to order 1, the probability of the escape is, as before, 1/2. When in order 1, the case of a
followed by n is excluded, increasing the probability of the escape from 2/5 to 2/4. After
switching to order 0, both s and n represent impossible cases and can be excluded. This
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leaves the order 0 with the four symbols a, i, m, and escape, with frequencies 4, 2, 1,
and 5, respectively. The total frequency is 12, so the escape is assigned probability 5/12
(1.26 bits) instead of the original 5/19 (1.93 bits). This escape is sent to the arithmetic
encoder, and the PPM encoder switches to order —1. Here it excludes all five symbols
asnim that have already been seen in order 1 and are therefore impossible in order —1.
The d can now be encoded with probability 1/(28 —5) a2 0.043 (4.52 bits instead of 4.8)
or 1/(256 — 5) ~ 0.004 (7.97 bits instead of 8), depending on the alphabet size.

Exact and careful model building should embody constraints
that the final answer had in any case to satisfy.

—TFrancis Crick, What Mad Pursuit, (1988)

2.18.4 Four PPM Variants

The particular method described earlier for assigning escape probabilities is called PPMC.
Four more methods, titled PPMA, PPMB, PPMP, and PPMX, have also been devel-
oped in attempts to assign precise escape probabilities in PPM. All five methods have
been selected based on the vast experience that the developers had with data compres-
sion. The last two are based on Poisson distribution [Witten and Bell 91], which is the
reason for the “P” in PPMP (the “X” comes from “approximate,” since PPMX is an
approximate variant of PPMP).

Suppose that a group of contexts in Table 2.73 has total frequencies n (excluding
the escape symbol). PPMA assigns the escape symbol a probability of 1/(n + 1). This
is equivalent to always assigning it a count of 1. The other members of the group are
still assigned their original probabilities of 2 /n, and these probabilities add up to 1 (not
including the escape probability).

PPMB is similar to PPMC with one difference. It assigns a probability to symbol
S following context C' only after S has been seen twice in context C. This is done by
subtracting 1 from the frequency counts. If, for example, context abc was seen three
times, twice followed by x and once by y, then x is assigned probability (2—1)/3, and y
(which should be assigned probability (1—1)/3 = 0) is not assigned any probability (i.e.,
does not get included in Table 2.73 or its equivalent). Instead, the escape symbol “gets”
the two counts subtracted from x and y, and it ends up being assigned probability 2/3.
This method is based on the belief that “seeing twice is believing.”

PPMP is based on a different principle. It considers the appearance of each symbol a
separate Poisson process. Suppose that there are ¢ different symbols in the input stream.
At a certain point during compression, n symbols have been read, and symbol 7 has been
input ¢; times (so Y ¢; = n). Some of the ¢;s are zero (this is the zero-probability prob-
lem). PPMP is based on the assumption that symbol ¢ appears according to a Poisson
distribution with an expected value (average) \;. The statistical problem considered by
PPMP is to estimate ¢ by extrapolating from the n-symbol sample input so far to the
entire input stream of N symbols (or, in general, to a larger sample). If we express N in
terms of n in the form N = (1 + 0)n, then a lengthy analysis shows that the number of
symbols that haven’t appeared in our n-symbol sample is given by t,0 — 202 +1303 —- - -,
where ¢; is the number of symbols that appeared exactly once in our sample, t5 is the
number of symbols that appeared twice, and so on.



150 2. Statistical Methods

Hapax legomena: words or forms that occur only once in the writings of a given
language; such words are extremely difficult, if not impossible, to translate.

In the special case where N is not the entire input stream but the slightly larger
sample of size n+ 1, the expected number of new symbols is t1% _tQ% —l—t;;% —---. This
expression becomes the probability that the next symbol is novel, so it is used in PPMP
as the escape probability. Notice that when t; happens to be zero, this expression is
normally negative and cannot be used as a probability. Also, the case t; = n results in
an escape probability of 1 and should be avoided. Both cases require corrections to the
sum above.

PPMX uses the approximate value t;/n (the first term of the sum) as the escape
probability. This expression also breaks down when ¢; happens to be 0 or n, so in these
cases PPMX is modified to PPMXC, which uses the same escape probability as PPMC.

Experiments with all five variants show that the differences between them are small.
Version X is indistinguishable from P, and both are slightly better than A-B-C. Version
C is slightly but consistently better than A and B.

It should again be noted that the way escape probabilities are assigned in the A-B-C
variants is based on experience and intuition, not on any underlying theory. Experience
with these variants indicates that the basic PPM algorithm is robust and is not affected
much by the precise way of computing escape probabilities. Variants P and X are based
on theory, but even they don’t significantly improve the performance of PPM.

2.18.5 Implementation Details

The main problem in any practical implementation of PPM is to maintain a data struc-
ture where all contexts (orders 0 through N) of every symbol read from the input stream
are stored and can be located fast. The structure described here is a special type of tree,
called a trie. This is a tree in which the branching structure at any level is determined
by just part of a data item, not by the entire item (page 191). In the case of PPM, an
order-N context is a string that includes all the shorter contexts of orders IV —1 through
0, so each context effectively adds just one symbol to the trie.

Figure 2.74 shows how such a trie is constructed for the string “zxzyzxxyzx” as-
suming N = 2. A quick glance shows that the tree grows in width but not in depth. Its
depth remains N + 1 = 3 regardless of how much input data has been read. Its width
grows as more and more symbols are input, but not at a constant rate. Sometimes, no
new nodes are added, such as in case 10, when the last x is read. At other times, up to
three nodes are added, such as in cases 3 and 4, when the second z and the first y are
added.

Level 1 of the trie (just below the root) contains one node for each symbol read
so far. These are the order-1 contexts. Level 2 contains all the order-2 contexts, and
so on. Every context can be found by starting at the root and sliding down to one of
the leaves. In case 3, for example, the two contexts are xz (symbol z preceded by the
order-1 context x) and zxz (symbol z preceded by the order-2 context zx). In case 10,
there are seven contexts ranging from xxy and xyz on the left to zxz and zyz on the
right.

The numbers in the nodes are context counts. The “z,4” on the right branch of
case 10 implies that z has been seen four times. The “x,3” and “y,1” below it mean
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that these four occurrences were followed by x three times and by y once. The circled
nodes show the different orders of the context of the last symbol added to the trie. In
case 3, for example, the second z has just been read and added to the trie. It was added
twice, below the x of the left branch and the x of the right branch (the latter is indicated
by the arrow). Also, the count of the original z has been incremented to 2. This shows
that the new z follows the two contexts x (of order 1) and zx (order 2).

1. ‘a’ 2. ¢’ 3. ¢’ 4. ‘a’

| a
2 /,@ 5,2 a,2 én,l
]

a,
.

s,1 aﬁl nyﬂ—il @ aﬁl

s,1 a,1 sl nl al

N AN

5. ‘n’ 6. ‘i

Figure 2.75: Part I. First Six Tries of “assanissimassa’.

It should now be easy for the reader to follow the ten steps of constructing the tree
and to understand intuitively how nodes are added and counts updated. Notice that
three nodes (or, in general, N +1 nodes, one at each level of the trie) are involved in each
step (except the first few steps when the trie hasn’t reached its final height yet). Some
of the three are new nodes added to the trie; the others have their counts incremented.

The next point that should be discussed is how the algorithm decides which nodes
to update and which to add. To simplify the algorithm, one more pointer is added to
each node, pointing backward to the node representing the next shorter context. A
pointer that points backward in a tree is called a vine pointer.
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Figure 2.75: (Continued) Next Four Tries of “assanissimassa”.

Figure 2.75 shows the first ten steps in the construction of the PPM trie for the
14-symbol string “assanissimassa”. Each of the ten steps shows the new vine pointers
(the dashed lines in the figure) constructed by the trie updating algorithm while that
step was executed. Notice that old vine pointers are not deleted; they are just not shown
in later diagrams. In general, a vine pointer points from a node X on level n to a node
with the same symbol X on level n — 1. All nodes on level 1 point to the root.

A node in the PPM trie therefore consists of the following fields:

1. The code (ASCII or other) of the symbol.

2. The count.

3. A down pointer, pointing to the leftmost child of the node. In Figure 2.75, Case 10,
for example, the leftmost son of the root is “a,2”. That of “a,2” is “n,1” and that of
“s,4” is “a,1”.

4. A right pointer, pointing to the next sibling of the node. The root has no right
sibling. The next sibling of node “a,2” is “i,2” and that of “i,2” is “m,1”.

5. A vine pointer. These are shown as dashed arrows in Figure 2.75.

Exercise 2.52: Complete the construction of this trie and show it after all 14 characters
have been input.
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At any step during the trie construction, one pointer, called the base, is maintained
that points to the last node added or updated in the previous step. This pointer is
shown as a solid arrow in Figure 2.75. Suppose that symbol S has been input and the
trie should be updated at this point. The algorithm for adding and/or updating nodes
is as follows:

1. Follow the base pointer to node X. Follow the vine pointer from X to Y (notice that
Y can be the root). Add S as a new child node of Y and set the base to point to it.
However, if Y already has a child node with S, increment the count of that node by 1
(and also set the base to point to it). Call this node A.

2. Repeat the same step but without updating the base. Follow the vine pointer from
Y to Z, add S as a new child node of Z, or update an existing child. Call this node B.
If there is no vine pointer from A to B, install one. (If both A and B are old nodes,
there will already be a vine pointer from A to B.)

3. Repeat until you have added (or incremented) a node at level 1.

a,3 1,2 m,1 n,1
—
n,l s2 ml sl a,l i1 a,l 1,

LTI
i1 a,l s1 s1 s1 nl1 milal il

N N

13. ‘s

s,3

’ .
i,1 s,2 a,l s,1 s,1 s,1 n,1 Ij;i,]_

N

14. ‘&’
Figure 2.75: (Continued) Final Two Tries of “assanissimassa”.
During these steps, the PPM encoder also collects the counts that are needed to

compute the probability of the new symbol S. Figure 2.75 shows the trie after the last
two symbols s and a were added. In Figure 2.75, Case 13, a vine pointer was followed
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from node “s,2”, to node “s,3”, which already had the two children “a,1” and “i,1”.
The first child was incremented to “a,2”. In Figure 2.75, Case 14, the subtree with
the three nodes “s,3”, “a,2”, and “i,1” tells the encoder that a was seen following
context ss twice and i was seen following the same context once. Since the tree has
two children, the escape symbol gets a count of 2, bringing the total count to 5. The
probability of a is therefore 2/5 (compare with Table 2.73). Notice that steps 11 and 12
are not shown. The serious reader should draw the tries for these steps as a voluntary
exercise (i.e., without an answer).

It is now easy to understand the reason why this particular trie is so useful. Each
time a symbol is input, it takes the algorithm at most N + 1 steps to update the trie and
collect the necessary counts by going from the base pointer toward the root. Adding a
symbol to the trie and encoding it takes O(N) steps regardless of the size of the trie.
Since N is small (typically 4 or 5), an implementation can be made fast enough for
practical use even if the trie is very large. If the user specifies that the algorithm should
use exclusions, it becomes more complex, since it has to maintain, at each step, a list of
symbols to be excluded.

As has been noted, between 0 and 3 nodes are added to the trie for each input
symbol encoded (in general, between 0 and N + 1 nodes). The trie can therefore grow
very large and fill up any available memory space. One elegant solution, adopted in
[Moffat 90], is to discard the trie when it gets full and start constructing a new one. In
order to bring the new trie “up to speed” fast, the last 2048 input symbols are always
saved in a circular buffer in memory and are used to construct the new trie. This reduces
the amount of inefficient code generated when tries are replaced.

2.18.6 PPM*

An important feature of the original PPM method is its use of a fixed-length, bounded
initial context. The method selects a value N for the context length and always tries
to predict (i.e., to assign probability to) the next symbol S by starting with an order-
N context C. If S hasn’t been seen so far in context C', PPM switches to a shorter
context. Intuitively it seems that a long context (large value of N) may result in better
prediction, but Section 2.18 explains the drawbacks of long contexts. In practice, PPM
implementations tend to use N values of 5 or 6 (Figure 2.76).

The PPM* method, due to [Cleary et al. 95] and [Cleary and Teahan 97|, tries to
extend the value of N indefinitely. The developers tried to find ways to use unbounded
values for NV in order to improve compression. The resulting method requires a new trie
data structure and more computational resources than the original PPM, but in return
it provides compression improvement of about 6% over PPMC.

(In mathematics, when a set S consists of symbols a;, the notation S* is used for
the set of all the strings of symbols a;.)

One problem with long contexts is the escape symbols. If the encoder inputs the
next symbol S, starts with an order-100 context, and does not find any past string of 100
symbols that’s followed by S, then it has to emit an escape and try an order-99 context.
Such an algorithm may result in up to 100 consecutive escape symbols being emitted
by the encoder, which can cause considerable expansion. It is therefore important to
allow for contexts of various lengths, not only very long contexts, and decide on the
length of a context depending on the current situation. The only restriction is that the
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Figure 2.76: Compression Ratio as a Function of Maximum Context Length.

decoder should be able to figure out the length of the context used by the encoder for
each symbol encoded. This idea is the main principle behind the design of PPM*.

An early idea was to maintain a record, for each context, of its past performance.
Such a record can be mirrored by the decoder, so both encoder and decoder can use, at
any point, that context that behaved best in the past. This idea did not seem to work
and the developers of PPM* were also faced with the task of having to explain why it
did not work as expected.

The algorithm finally selected for PPM* depends on the concept of a deterministic
context. A context is defined as deterministic when it gives only one prediction. For
example, the context this,is myy, is deterministic if every appearance of it so far in
the input has been followed by the same symbol. Experiments indicate that if a context
C' is deterministic, the chance that when it is seen next time, it will be followed by a
novel symbol is smaller than what is expected from a uniform prior distribution of the
symbols. This feature suggests the use of deterministic contexts for prediction in the
new version of PPM.

Based on experience with deterministic contexts, the developers have arrived at the
following algorithm for PPM*. When the next symbol S is input, search all its contexts
trying to find deterministic contexts of S. If any such contexts are found, use the shortest
of them. If no deterministic contexts are found, use the longest nondeterministic context.

The result of this strategy for PPM* is that nondeterministic contexts are used
most of the time, and they are almost always 5—6 symbols long, the same as those used
by traditional PPM. However, from time to time deterministic contexts are used and
they get longer as more input is read and processed. (In experiments performed by
the developers, deterministic contexts started at length 10 and became as long as 20—
25 symbols after about 30,000 symbols were input.) The use of deterministic contexts
results in very accurate prediction, which is the main contributor to the slightly better
performance of PPM* over PPMC.

A practical implementation of PPM* has to solve the problem of keeping track of
long contexts. Each time a symbol S is input, all its past occurrences have to be checked,
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together with all the contexts, short and long, deterministic or not, for each occurrence.
In principle, this can be done by simply keeping the entire data file in memory and
checking back for each symbol. Imagine the symbol in position ¢ in the input file. It is
preceded by ¢ — 1 symbols, so 7 — 1 steps are needed to search and find all its contexts.
The total number of steps for n symbols is therefore 1 +2+---+ (n—1) =n(n —1)/2.
For large n, this amounts to O(n?) complexity—too slow for practical implementations.
This problem was solved by a special trie, termed a context-trie, where a leaf node
points back to the input string whenever a context is unique. Each node corresponds to
a symbol that follows some context and the frequency count of the symbol is stored in
the node.

PPM* uses the same escape mechanism as the original PPM. The implementation
reported in the PPM publications uses the PPMC algorithm to assign probabilities to
the various escape symbols. Notice that the original PPM uses escapes less and less over
time, as more data is input and more context predictions become available. In contrast,
PPM* has to use escapes very often, regardless of the amount of data already input,
particularly because of the use of deterministic contexts. This fact makes the problem
of computing escape probabilities especially acute.

Compressing the entire Calgary corpus by PPM* resulted in an average of 2.34 bpc,
compared to 2.48 bpc achieved by PPMC. This represents compression improvement of
about 6% because 2.34 is 94.4% of 2.48.

2.18.7 PPMZ

The PPMZ variant, originated and implemented by Charles Bloom [Bloom 98], is an
attempt to improve the original PPM algorithm. It starts from the premise that PPM is
a powerful algorithm that can, in principle, compress data to its entropy, especially when
presented with large amounts of input data, but performs less than optimal in practice
because of poor handling of features such as deterministic contexts, unbounded-length
contexts, and local order estimation. PPMZ attempts to handle these features in an
optimal way, and it ends up achieving superior performance.

The PPMZ algorithm starts, similar to PPM*, by examining the maximum deter-
ministic context of the current symbol. If no deterministic context is found, the PPMZ
encoder executes a local-order-estimation (LOE) procedure, to compute an order in the
interval [0,12] and use it to predict the current symbol as the original PPM algorithm
does. In addition, PPMZ uses a secondary model to predict the probabilities of the
various escape symbols.

The originator of the method noticed that the various PPM implementations com-
press data to about 2 bpc, where most characters are compressed to 1 bpc each, and the
remaining characters represent either the start of the input stream or random data. The
natural conclusion is that any small improvements in the probability estimation of the
most common characters can lead to significant improvements in the overall performance
of the method. We start by discussing the way PPMZ handles unbounded contexts.

Figure 2.77a shows a situation where the current character is e and its 12-order
context is 11, ,assume th. The context is hashed into a pointer P that points to a linked
list. The nodes of the list point to all the 12-character strings in the input stream that
happen to hash to the same pointer P. (Each node also has a count field indicating
the number of times the string pointed to by the node has been a match.) The encoder
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follows the pointers, looking for a match whose minimum length varies from context
to context. Assuming that the minimum match length in our case is 15, the encoder
will find the 15-character match e all assume th (the preceding w makes this a 16-
character match, and it may even be longer). The current character e is encoded with a
probability determined by the number of times this match has been found in the past,
and the match count (in the corresponding node in the list) is updated.

Figure 2.77b shows a situation where no deterministic match is found. The current
character is again an e and its order-12 context is the same 11 assume jth, but the
only string 11, ,assume  th in the data file is preceded by the three characters y,a. The
encoder does not find a 15-character match, and it proceeds as follows: (1) It outputs an
escape to indicate that no deterministic match has been found. (2) It invokes the LOE
procedure to compute an order. (3) It uses the order to predict the current symbol the
way ordinary PPM does. (4) It takes steps to ensure that such a case will not happen

again.
o
/_/%|

[ xyz...we_all_assume_then... abc ...we_all_assume_then...
(a)
1] hash
/_/%I
[ xyz...ey_all_assume_then... abc ...we_all_assume_then...

(b)

Figure 2.77: Unbounded-Length Deterministic Contexts in PPMZ.

In the first of these steps, the encoder appends a node to the list and sets it to
point to the new 12-character context 11_assume th. The second step increments the
minimum match length of both contexts by 1 (i.e., to 16 characters). This ensures that
these two contexts will be used in the future only when the encoder can match enough
characters to distinguish between them.

This complex procedure is executed by the PPMZ encoder to guarantee that all the
unbounded-length contexts are deterministic.

Local order estimation is another innovation of PPMZ. Traditional PPM uses the
same value for N (the maximum order length, typically 5-6) for all input streams, but a
more sophisticated version should attempt to estimate different values of N for different
input files or even for different contexts within an input file. The LOE computation
performed by PPMZ tries to decide which high-order contexts are unreliable. LOE finds
a matching context, examines it in each order, and computes a confidence rating for each
order.

At first, it seems that the best measure of confidence is the entropy of the context,
because the entropy estimates the length of the output in bits. In practice, however,
this measure turned out to underestimate the reliability of long contexts. The reason
mentioned by the method’s developer is that a certain symbol X may be common in an
input stream; yet any specific context may include X only once.
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The confidence measure finally selected for LOE is based on the probability P of the
most probable character in the context. Various formulas involving P were tried, and all
resulted in about the same performance. The conclusion was that the best confidence
measure for LOE is simply P itself.

The last important feature of PPMZ is the way it estimates the escape probabilities.
This is called secondary escape estimation or SEE. The main idea is to have an adaptive
algorithm where not only the counts of the escapes but also the way the counts are
computed are determined by the input stream. In each context, the PPMC method of
counting the escapes is first applied. This method counts the number of novel characters
(i.e., characters found that were nor predicted) in the context. This information is
then used to construct an escape context which, in turn, is used to look up the escape
probability in a table.

The escape context is a number constructed from the four fields listed here, each
quantized to a few bits. Both linear and logarithmic quantization were tried. Linear
quantization simply truncates the least-significant bits. Logarithmic quantization com-
putes the logarithm of the number to be quantized. This quantizes large numbers more
than small ones, with the result that small values remain distinguishable, while large
values may become equal. The four components of the escape context are as follows:

1. The PPM order (which is between 0 and 8), quantized to two bits.

2. The escape count, quantized to two bits.

3. The number of successful matches (total count minus the escape count), quan-
tized to three bits.

4. Ten bits from the two characters xy preceding the current symbol S. Seven bits
are taken from z and three bits from .

This number becomes the order-2 escape context. After deleting some bits from it,
PPMZ also creates order-1 and order-0 contexts (15 bits and 7 bits long, respectively).
The escape contexts are used to update a table of escape counts. Each entry in this
table corresponds to matches coded from past PPM contexts that had the same escape
contexts. The information in the table is then used in a complex way to construct the
escape probability that is sent to the arithmetic coder to code the escape symbol itself.

The advantage of this complex method is that it combines the statistics gathered
from the long (high order) contexts. These contexts provide high compression but are
sparse, causing the original PPM to overestimate their escape probabilities.

Applied to the entire Calgary corpus, PPMZ resulted in an average of 2.119 bpc.
This is 10% better than the 2.34 bpc obtained by PPM* and 17% better than the
2.48 bpc achieved by PPMC.

2.18.8 Fast PPM

Fast PPM is a PPM variant developed and implemented by [Howard and Vitter 94b] as
a compromise between speed and performance of PPM. Even though it is recognized as
one of the best (if not the best) statistical compression method, PPM is not very popular
because it is slow. Most general-purpose lossless compression software implementations
select a dictionary-based method. Fast PPM attempts to isolate those features of PPM
that contribute only marginally to compression performance and replace them by ap-
proximations. It was hoped that this would speed up execution to make this version
competitive with common, commercial lossless compression products.
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PPM has two main aspects: modeling and encoding. The modeling part searches the
contexts of the current symbol to compute its probability. The fast version simplifies
that part by eliminating the explicit use of escape symbols, computing approximate
probabilities, and simplifying the exclusion mechanism. The encoding part of PPM
uses adaptive arithmetic coding. The fast version speeds up this part by using quasi-
arithmetic coding, a method developed by the same researchers [Howard and Vitter 92c]
and not discussed here.

The modeling part of fast PPM is illustrated in Table 2.78. We assume that the
input stream starts with the string abcbabdbaeabbabe and that the current symbol is
the second e (the last character of the string). Part (a) of the table lists the contexts of
this character starting with order 3. The order-3 context of this e is bab, which has been
seen once in the past, but was followed by a d, so it cannot be used to predict the current
e. The encoder therefore skips to order 2, where the context ab was seen three times,
but never followed by an e (notice that the d following ab has to be excluded). Skipping
to order 1, the encoder finds four different symbols following the order-1 context b.
They are c, a, d, and b. Of these, c, d, and b have already been seen, following longer
contexts, and are therefore excluded, and the d is designated NF (not found), because
we are looking for an e. Skipping to order 0, the encoder finally finds e, following a, b,
c, and d, which are all excluded. The point is that both the encoder and decoder of fast
PPM can easily generate this table with the information available to them. All that the
decoder needs in order to decode the e is the number of NFs (4 in our example) in the
table.

Part (b) of the table illustrates the situation when the sixth b (there are seven b’s
in all) is the current character. It shows that this character can be identified to the
decoder by encoding three NFs and writing them on the compressed stream.

Order Context Symbol Count Action Order Context Symbol Count Action
3 bab d 1 NF, —2 3 eab - - —2
9 ab ¢ 1 NF 2 ab d 1 NF
d 1 exclude d 1 NF,—1
b 1 NF, —1 1 b C 1 exclude
1 b c 1 exclude a 2 NF
a 3 NF d 1 exclude, — 0
d 1  exclude 0 a 4 exclude
b 1  exclude, — 0 b 5  found
0 a ) exclude
b 7  exclude
¢ 1 exclude
d 1 exclude
e 1 found

(a) (b)

Figure 2.78: Two Examples of Fast PPM For abcbabdbaeabbabe.

— >
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A different way of looking at this part of fast PPM is to imagine that the encoder
generates a list of symbols, starting at the highest order and eliminating duplicates. The
list for part (a) of the table consists of dcbae (four NF's followed by an F), while the list
for part (b) is cdab (three NFs followed by an F).

Thus, fast PPM encodes each character by encoding a sequence of NFs, followed
by one F (found). It therefore uses a binary arithmetic coder. For increased speed,
quasi-arithmetic coding is used, instead of the more common QM coder of Section 2.16.
For even faster operation, the quasi-arithmetic coder is used to encode the NF's only
for symbols with highest probability, then use a Rice code (Section 7.9) to encode the
symbol’s (e or b in our example) position in the remainder of the list. Variants of fast
PPM can eliminate the quasi-arithmetic coder altogether (for maximum speed) or use
it all the way (for maximum compression).

The results of applying fast PPM to the Calgary corpus are reported by the de-
velopers and seem to justify its development effort. The compression performance is
2.341 bpc (for the version with just quasi-arithmetic coder) and 2.287 bpc (for the ver-
sion with both quasi-arithmetic coding and Rice code). This is somewhat worse than the
2.074 bpc achieved by PPMC. However, the speed of fast PPM is about 25,000-30,000
characters per second, compared to about 16,000 characters per second for PPMC—a
speedup factor of about 2!

Temporal reasoning involves both prediction and explanation. Prediction is projection
forwards from causes to effects whilst explanation is projection backwards from effects
to causes. That is, prediction is reasoning from events to the properties and events
they cause, whilst explanation is reasoning from properties and events to events that
may have caused them. Although it is clear that a complete framework for temporal
reasoning should provide facilities for solving both prediction and explanation prob-
lems, prediction has received far more attention in the temporal reasoning literature
than explanation.

—DMurray Shanahan, Proceedings IJCAI 1989

2.19 Context-Tree Weighting

Whatever the input stream is, text, pixels, sound, or anything else, it can be considered
a binary string. Ideal compression (i.e., compression at or very near the entropy of the
string) would be achieved if we could use the bits that have been input so far in order
to predict with certainty (i.e., with probability 1) the value of the next bit. In practice,
the best we can hope for is to use history to estimate the probability that the next bit
will be 1. The context-tree weighting (CTW) method [Willems et al. 95] starts with a
given bit-string bt1 = byby...b; and the d bits that precede it ¢g = b_g4...b_2b_1 (the
context of b). The two strings cq and b} constitute the input stream. The method uses
a simple algorithm to construct a tree of depth d based on the context, where each node
corresponds to a substring of ¢4. The first bit b; is then input and examined. If it is
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1, the tree is updated to include the substrings of cgb; and is then used to calculate
(or estimate) the probability that b; will be 1 given context c4. If by is zero, the tree
is updated differently and the algorithm again calculates (or estimates) the probability
that b; will be zero given the same context. Bit b; and its probability are then sent to
an arithmetic encoder, and the process continues with bs. The context bits themselves
are written on the compressed stream in raw format.

The depth d of the context tree is fixed during the entire compression process, and it
should depend on the expected correlation among the input bits. If the bits are expected
to be highly correlated, a small d may be enough to get good probability predictions
and thus good compression.

In thinking of the input as a binary string, it is customary to use the term “source.”
We think of the bits of the inputs as coming from a certain information source. The
source can be memoryless or it can have memory. In the former case, each bit is indepen-
dent of its predecessors. In the latter case, each bit depends on some of its predecessors
(and, perhaps, also on its successors, but these cannot be used because they are not
available to the decoder), so they are correlated.

We start by looking at a memoryless source where each bit has probability P,(1)
of being a 1 and probability P,(0) of being a 0. We set § = P,(1), so P,(0) =1—46
(the subscript a stands for “actual” probability). The probability of a particular string
b! being generated by the source is denoted by P,(b), and it equals the product

t

Pa(b)) =[] Pal®i)-

i=1

If string b% contains a zeros and b ones, then P, (b}) = (1 — §)26°.

Example: Let t =5, a = 2, and b = 3. The probability of generating a 5-bit binary
string with two zeros and three ones is P, (b7) = (1 —0)263. Table 2.79 lists the values of
P,(b?) for seven values of 6 from 0 to 1. It is easy to see that the maximum is obtained
when 6 = 3/5. To understand these values intuitively we examine all 32 5-bit numbers.
Ten of them consist of two zeros and three ones, so the probability of generating such
a string is 10/32 = 0.3125 and the probability of generating a particular string out of
these 10 is 0.03125. This number is obtained for § = 1/2.

6: 0 1/5 2/5 1/2 3/5 4/5  5/5
P,(2,3): 0 0.00512 0.02304 0.03125 0.03456 0.02048 0

Table 2.79: Seven Values of P,(2, 3).

In real-life situations we don’t know the value of #, so we have to estimate it based
on what has been input in the past. Assuming that the immediate past string b} consists
of a zeros and b ones, it makes sense to estimate the probability of the next bit being 1
by

P.(bsy = 1) = ——,
(besa = 101) = —
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where the subscript e stands for “estimate” (the expression above is read “the estimated
probability that the next bit b;y1 will be a 1 given that we have seen string b} is...”).
The estimate above is intuitive and cannot handle the case a = b = 0. A better estimate,
due to Krichevsky and Trofimov [Krichevsky 81], is called KT and is given by

b+1/2

P, —qpt) = —— 1=
(b1 = 1]b1) a+b+1

The KT estimate, like the intuitive estimate, predicts a probability of 1/2 for any case
where a = b. Unlike the intuitive estimate, however, it also works for the case a = b = 0.

The KT Boundary

All over the globe is a dark clay-like layer that was deposited around 65 mil-
lion years ago. This layer is enriched with the rare element iridium. Older fossils
found under this KT layer include many dinosaur species. Above this layer (younger
fossils) there are no dinosaur species found. This suggests that something that hap-
pened around the same time as the KT boundary was formed killed the dinosaurs.
Iridium is found in meteorites, so it is possible that a large iridium-enriched mete-
orite hit the earth, kicking up much iridium dust into the stratosphere. This dust
then spread around the earth via air currents and was deposited on the ground very
slowly, later forming the KT boundary.

This event has been called the “KT Impact” because it marks the end of the
Cretaceous Period and the beginning of the Tertiary. The letter “K” is used because
“C” represents the Carboniferous Period, which ended 215 million years earlier.

o Exercise 2.53: Use the KT estimate to calculate the probability that the next bit will
be a zero given string b as the context.

Example: We use the KT estimate to calculate the probability of the 5-bit string
01110. The probability of the first bit being zero is (since there is no context)

0+1/2 )

-T2 ) =12
0+0+1

P(0foull) = P (0]cpo) = (1

The probability of the entire string is the product

P,(01110) = P,(2,3)
— P.(0Juull)P,(1]0) P.(1]01) P, (1]011) P, (0]0111)
= Pe(0]a=b=0)Pe(1|a=1,0=0)Pe(1]a=p=1)Pe(1]a=1,0=2) Pe (0]¢=1,p=3)
:(1_ U+U2),0+1ﬂ. L+U2.2+1ﬂ.<1_ &+U2>
0+0+1
1

1+40+1 1+14+1 14+2+1 1+3+1

135 3 3
L .. = — ~0.01172.
2 46 8 10 256 0.0117
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In general, the KT estimated probability of a string with a zeros and b ones is

1/2:3/2+-(a—1/2)-1/2-3/2--- (b — 1/2)

Fe(a,t) = 123 (a+0)

. (2.11)

Table 2.80 lists some values of P.(a,b) calculated by Equation (2.11). Notice that
P.(a,b) = P.(b,a), so the table is symmetric.

0 1 2 3 4 5

- 1/2 3/8 5/16 35/128  63/256
1/2 1/8 1/16  5/128 7/256  21/1024
3/8 1/16  3/128  3/256  7/1024  9/2048

5/8  5/128  3/256  5/1024  5/2048  45/32768
35/128  7/256  7/1024  5/2048  35/32768  35/65536
63/256 21/1024 9/2048 45/32768 35/65536 63/262144

Tk W N~ O

Table 2.80: KT Estimates for Some P.(a,b).

Up until now we have assumed a memoryless source. In such a source the probability
0 that the next bit will be a 1 is fixed. Any binary string, including random ones, is
generated by such a source with equal probability. Binary strings that have to be
compressed in real situations are generally not random and are generated by a non-
memoryless source. In such a source 6 is not fixed. It varies from bit to bit, and
it depends on the past context of the bit. Since a context is a binary string, all the
possible past contexts of a bit can be represented by a binary tree. Since a context can
be very long, the tree can include just some of the last bits of the context, to be called
the suffixz. As an example consider the 42-bit string

S =000101100111010110001101001011110010101100.

Let’s assume that we are interested in suffixes of length 3. The first 3 bits of S don’t
have long enough suffixes, so they are written raw on the compressed stream. Next we
examine the 3-bit suffix of each of the last 39 bits of S and count how many times each
suffix is followed by a 1 and how many times by a 0. Suffix 001, for example, is followed
twice by a 1 and three times by a 0. Figure 2.81a shows the entire suffix tree of depth 3
for this case (in general, this is not a complete binary tree). The suffixes are read from
the leaves to the root, and each leaf is labeled with the probability of that suffix being
followed by a 1-bit. Whenever the three most recently read bits are 001, the encoder
starts at the root of the tree and follows the edges for 1, 0, and 0. It finds 2/5 at the leaf,
so it should predict a probability of 2/5 that the next bit will be a 1, and a probability
of 1 — 2/5 that it will be a 0. The encoder then inputs the next bit, examines it, and
sends it, with the proper probability, to be arithmetically encoded.

Figure 2.81b shows another simple tree of depth 2 that corresponds to the set of
suffixes 00, 10, and 1. Each suffix (i.e., each leaf of the tree) is labeled with a probability
0. Thus, for example, the probability that a bit of 1 will follow the suffix ...10 is 0.3.
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The tree is the model of the source, and the probabilities are the parameters. In practice,
neither the model nor the parameters are known, so the CTW algorithm has to estimate

them.
/\
/N /\0\
YN N N N
/3 2/6  4/7 2/5  2/6  5/6  3/4  2/2
(a)

/X
AN

010=0.3 611=0.5

(b)

Figure 2.81: Two Suffix Trees.

Next we get one step closer to real-life situations. We assume that the model is
known and the parameters are unknown, and we use the KT estimator to estimate
the parameters. As an example we use the model of Figure 2.81b but without the
probabilities. We use the string 10/0100110 = 10|b1b2b3bsbsbsb7, where the first two bits
are the suffix, to illustrate how the probabilities are estimated with the KT estimator.
Bits b; and b4 have suffix 10, so the probability for leaf 10 of the tree is estimated as
the KT probability of substring b1bs = 00, which is P.(2,0) = 3/8 (two zeros and no
ones) from Table 2.80. Bits by and bs have suffix 00, so the probability for leaf 00 of the
tree is estimated as the KT probability of substring babs = 11, which is P,(0,2) = 3/8
(no zeros and two ones) from Table 2.80. Bits b3 = 0, bg = 1, and by = 0 have suffix 1,
so the probability for leaf 1 of the tree is estimated as P.(2,1) = 1/16 (two zeros and a
single one) from Table 2.80. The probability of the entire string 0100110 given the suffix
10 is thus the product
9

1
16 = 1024 > .0088.

ool w
ool w

o Exercise 2.54: Use this example to estimate the probabilities of the five strings 0, 00,
000, 0000, and 00000, assuming that each is preceded by the suffix 00.
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In the last step we assume that the model, as well as the parameters, are unknown.
We construct a binary tree of depth d. The root corresponds to the null context, and
each node s corresponds to the substring of bits that were input following context s.
Each node thus splits up the string. Figure 2.82a shows an example of a context tree
for the string 10/0100110 = 10|b1babsbsbsbeby.

b1 b2 b3 bs b5 bs by
1 0

b1 bab2 bs

Y SN
A

b7 b3 bg ba b2 bs
(a)

(4,3) Pu=7/2048

T

16 128

NN N

1/2 1/8 2,0),5/1 0,2)
ANVAN /

(1,0) (1,1 (1,0) (1,0

1/2 1/8 1/2 1/2 3/8

(b)

Figure 2.82: (a) A Context Tree. (b) A Weighted Context Tree.

Figure 2.82b shows how each node s contains the pair (as, bs), the number of zeros
and ones in the string associated with s. The root, for example, is associated with
the entire string, so it contains the pair (4,3). We still have to calculate or estimate
a weighted probability P for each node s, the probability that should be sent to the
arithmetic encoder to encode the string associated with s. This calculation is, in fact,
the central part of the CTW algorithm. We start at the leaves because the only thing
available in a leaf is the pair (as,bs); there is no suffix. The best assumption that
can therefore be made is that the substring consisting of as zeros and bs ones that’s
associated with leaf s is memoryless, and the best weighted probability that can be
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defined for the node is the KT estimated probability P.(as,bs). We therefore define

P: ' P (a,,b,) if depth(s) = d. (2.12)

Using the weighted probabilities for the leaves, we work our way recursively up the
tree and calculate weighted probabilities for the internal nodes. For an internal node s we
know a little more than for a leaf, since such a node has one or two children. The children,
which are denoted by sy and s;, have already been assigned weighted probabilities.
We consider two cases. If the substring associated with suffix s is memoryless, then
P.(as,bs) is a good weighted probability for it. Otherwise the CTW method claims
that the product P;°P;' of the weighted probabilities of the child nodes is a good
coding probability (a missing child node is considered, in such a case, to have weighted
probability 1).

Since we don’t know which of the above cases is true for a given internal node s,
the best that we can do is to assign s a weighted probability that’s the average of the
two cases above, i.e.,

ps det Polasb) + PPy

5 if depth(s) < d. (2.13)

The last step that needs to be described is the way the context tree is updated
when the next bit is input. Suppose that we have already input and encoded the string
b1bs .. .b;_1. Thus, we have already constructed a context tree of depth d for this string,
we have used Equations (2.12) and (2.13) to calculate weighted probabilities for the
entire tree, and the root of the tree already contains a certain weighted probability. We
now input the next bit b; and examine it. Depending on what it is, we need to update
the context tree for the string b1bs...b;—1b;. The weighted probability at the root of
the new tree will then be sent to the arithmetic encoder, together with bit b;, and will
be used to encode b;.

If b, = 0, then updating the tree is done by (1) incrementing the as counts for all
nodes s, (2) updating the estimated probabilities P.(as,bs) for all the nodes, and (3)
updating the weighted probabilities P, (as, bs) for all the nodes. If by = 1, then all the b
should be incremented, followed by updating the estimated and weighted probabilities
as above. Figure 2.83a shows how the context tree of Figure 2.82b is updated when
bt = 0

Figure 2.83b shows how the context tree of Figure 2.82b is updated when b; = 1.

Exercise 2.55: Construct the context trees with depth 3 for the strings 000/0, 00000,
000|1, and 000|11.

The depth d of the context tree is selected by the user (or is built into both encoder
and decoder) and does not change during the compression job. The tree has to be
updated for each input bit processed, but this requires updating at most d + 1 nodes.
The number of operations needed to process n input bits is thus linear in n.

I hoped that the contents of his pockets might help me to form a conclusion.

—Arthur Conan Doyle, Memoires of Sherlock Holmes
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(5,3)

Pe:.0013732
Py=.0023345

/\ 0117
0 0625 0527

0.0625

N YY"

(1,0)
3| 125 375
D 125
(1,0)
.5 .125 .375 .5 .375
.5 125 375 .5 375
(a)
(4,4)
Pe:.00106811
Py=.00108337
0 0625 /\ 0117
0.0625 .0175

/\ i N\
N 132\ “/\ /375

(1,0)
5 .125 .175 5 .375
5 125 175 5 375
(b)

Figure 2.83: Context Trees for by = 0, 1.

2.19.1 CTW for Text Compression

The CTW method has so far been developed for compressing binary strings. In practice,
we are normally interested in compressing text, image, and sound streams, and this
section discusses one approach to applying CTW to text compression.

Each ASCII character consists of seven bits, and all 128 7-bit combinations are
used. However, some combinations (such as E and T) are more common than others
(such as Z, <, and certain control characters). Also, certain character pairs and triplets
(such as TH and THE) appear more often than others. We therefore claim that if b; is
a bit in a certain ASCII character X, then the ¢ — 1 bits b1bs ...b;_1 preceding it can
act as context (even if some of them are not even parts of X but belong to characters
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preceding X). Experience shows that good results are obtained (1) with contexts of size
12, (2) when seven context trees are used, each to construct a model for one of the seven
bits, and (3) if the original KT estimate is modified to the zero-redundancy estimate,
defined by

1 1 1
Pia,b) 5 Pe(a,b) + J0(a=0) + 29(b=0),

where J(true) 41 and Y(false) )

Another experimental feature is a change in the definition of the weighted proba-
bilities. The original definition, Equation (2.13), is used for the two trees on the ASCII
borders (i.e., the ones for bits 1 and 7 of each ASCII code). The weighted probabilities
for the five context trees for bits 2-6 are defined by P = P;°P;'.

This produces typical compression of 1.8 to 2.3 bits/character on the documents of
the Calgary Corpus.

Paul Volf [Volf 97] has proposed other approaches to CTW text compression.

The excitement that a gambler feels when making a bet is equal to
the amount he might win times the probability of winning it.

—Blaise Pascal

(G e






3
Dictionary Methods

Statistical compression methods use a statistical model of the data, which is why the
quality of compression they achieve depends on how good that model is. Dictionary-
based compression methods do not use a statistical model, nor do they use variable-size
codes. Instead they select strings of symbols and encode each string as a token using
a dictionary. The dictionary holds strings of symbols, and it may be static or dynamic
(adaptive). The former is permanent, sometimes allowing the addition of strings but no
deletions, whereas the latter holds strings previously found in the input stream, allowing
for additions and deletions of strings as new input is being read.

Given a string of n symbols, a dictionary-based compressor can, in principle, com-
press it down to nH bits where H is the entropy of the string. Thus, dictionary-based
compressors are entropy encoders, but only if the input file is very large. For most files
in practical applications, dictionary-based compressors produce results that are good
enough to make this type of encoder very popular. Such encoders are also general
purpose, performing on images and audio data as well as they perform on text.

The simplest example of a static dictionary is a dictionary of the English language
used to compress English text. Imagine a dictionary containing perhaps half a million
words (without their definitions). A word (a string of symbols terminated by a space or
a punctuation mark) is read from the input stream and the dictionary is searched. If a
match is found, an index to the dictionary is written into the output stream. Otherwise,
the uncompressed word itself is written. (This is an example of logical compression.)

As a result, the output stream contains indexes and raw words, and it is important
to distinguish between them. Omne way to achieve this is to reserve an extra bit in
every item written. In principle, a 19-bit index is sufficient to specify an item in a
219 = 524,288-word dictionary. Thus, when a match is found, we can write a 20-bit
token that consists of a flag bit (perhaps a zero) followed by a 19-bit index. When
no match is found, a flag of 1 is written, followed by the size of the unmatched word,
followed by the word itself.
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Example: Assuming that the word bet is found in dictionary entry 1025, it is
encoded as the 20-bit number 0/0000000010000000001. Assuming that the word xet
is not found, it is encoded as 1/0000011|01111000]/01100101|01110100. This is a 4-byte
number where the 7-bit field 0000011 indicates that three more bytes follow.

Assuming that the size is written as a 7-bit number, and that an average word size
is five characters, an uncompressed word occupies, on average, six bytes (= 48 bits) in
the output stream. Compressing 48 bits into 20 is excellent, provided that it happens
often enough. Thus, we have to answer the question how many matches are needed in
order to have overall compression? We denote the probability of a match (the case where
the word is found in the dictionary) by P. After reading and compressing N words, the
size of the output stream will be N[20P +48(1 — P)] = N[48 — 28 P] bits. The size of the
input stream is (assuming five characters per word) 40N bits. Compression is achieved
when N[48 — 28 P] < 40N, which implies P > 0.29. We need a matching rate of 29% or
better to achieve compression.

Exercise 3.1: What compression factor do we get with P = 0.97

As long as the input stream consists of English text, most words will be found in
a 500,000-word dictionary. Other types of data, however, may not do that well. A file
containing the source code of a computer program may contain “words” such as cout,
xor, and malloc that may not be found in an English dictionary. A binary file normally
contains gibberish when viewed in ASCII, so very few matches may be found, resulting
in considerable expansion instead of compression.

This shows that a static dictionary is not a good choice for a general-purpose com-
pressor. It may, however, be a good choice for a special-purpose one. Consider a chain
of hardware stores, for example. Their files may contain words such as nut, bolt, and
paint many times, but words such as peanut, lightning, and painting will be rare.
Special-purpose compression software for such a company may benefit from a small,
specialized dictionary containing, perhaps, just a few hundred words. The computers in
each branch would have a copy of the dictionary, making it easy to compress files and
send them between stores and offices in the chain.

In general, an adaptive dictionary-based method is preferable. Such a method can
start with an empty dictionary or with a small, default dictionary, add words to it as
they are found in the input stream, and delete old words because a big dictionary slows
down the search. Such a method consists of a loop where each iteration starts by reading
the input stream and breaking it up (parsing it) into words or phrases. It then should
search the dictionary for each word and, if a match is found, write a token on the output
stream. Otherwise, the uncompressed word should be written and also added to the
dictionary. The last step in each iteration checks whether an old word should be deleted
from the dictionary. This may sound complicated, but it has two advantages:

1. It involves string search and match operations, rather than numerical computations.
Many programmers prefer that.

2. The decoder is simple (this is an asymmetric compression method). In statistical
compression methods, the decoder is normally the exact opposite of the encoder (sym-
metric compression). In an adaptive dictionary-based method, however, the decoder has
to read its input stream, determine whether the current item is a token or uncompressed
data, use tokens to obtain data from the dictionary, and output the final, uncompressed



3.1 String Compression 173

data. It does not have to parse the input stream in a complex way, and it does not have
to search the dictionary to find matches. Many programmers like that, too.

Having one’s name attached to a scientific discovery, technique, or phenomenon is
considered a special honor in science. Having one’s name associated with an entire field
of science is even more so. This is what happened to Jacob Ziv and Abraham Lempel.
In the 1970s these two researchers developed the first methods, LZ77 and LZ78, for
dictionary-based compression. Their ideas have been a source of inspiration to many
researchers, who generalized, improved, and combined them with RLE and statistical
methods to form many commonly used lossless compression methods for text, images,
and audio. This chapter describes the most common LZ compression methods used
today and shows how they were developed from the basic ideas of Ziv and Lempel.

I love the dictionary, Kenny, it’s the only book with the words in
the right place.

—Paul Reynolds as Colin Mathews in Press Gang (1989)

3.1 String Compression

In general, compression methods based on strings of symbols can be more efficient than
methods that compress individual symbols. To understand this, the reader should first
review Exercise 2.4. This exercise shows that in principle, better compression is possible
if the symbols of the alphabet have very different probabilities of occurrence. We use a
simple example to show that the probabilities of strings of symbols vary more than the
probabilities of the individual symbols constituting the strings.

We start with a 2-symbol alphabet a; and as, with probabilities P, = 0.8 and
P, = 0.2, respectively. The average probability is 0.5, and we can get an idea of the
variance (how much the individual probabilities deviate from the average) by calculating
the sum of absolute differences [0.8 — 0.5| + 0.2 — 0.5] = 0.6. Any variable-size code
would assign 1-bit codes to the two symbols, so the average size of the code is one bit
per symbol.

We now generate all the strings of two symbols. There are four of them, shown in
Table 3.1a, together with their probabilities and a set of Huffman codes. The average
probability is 0.25, so a sum of absolute differences similar to the one above yields

0.64 — 0.25] + 0.16 — 0.25| + |0.16 — 0.25] + |0.04 — 0.25| = 0.78.

The average size of the Huffman code is 1 X 0.64 +2 x 0.16 +3 x 0.16 + 3 x 0.04 = 1.56
bits per string, which is 0.78 bits per symbol.

In the next step we similarly create all eight strings of three symbols. They are
shown in Table 3.1b, together with their probabilities and a set of Huffman codes. The
average probability is 0.125, so a sum of absolute differences similar to the ones above
yields

0.512 — 0.125] + 3[0.128 — 0.125| + 3]0.032 — 0.125| + |0.008 — 0.125| = 0.792.
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String Probability Code

aijaq 08x08=064 0
ajas 0.8x02=0.16 11

asay 0.2x0.8=0.16 100 String Probability Code
a20a2 02x02=0.04 101 aiara; 0.8x0.8x0.8=0.512 0
(a) ajai;asg 0.8 x0.8x0.2=0.128 100
arasa; 0.8 % 0.2 x 0.8=0.128 101
Str.  Variance Avg. size arasas 0.8 x 0.2 x 0.2=0.032 11100
size  of prob.  of code asaia; 0.2 x 0.8 x 0.8 =0.128 110
1 0.6 1 asaias 0.2 x 0.8 x 0.2 =10.032 11101
2 0.78 0.78 asasa; 0.2 x 0.2 x 0.8=0.032 11110
3 0.792 0.728 asasas 0.2 x 0.2 x 0.2 =10.008 11111

(c) (b)

Table 3.1: Probabilities and Huffman Codes for a Two-Symbol Alphabet.

The average size of the Huffman code in this case is 1 x 0.512 +3 x 3 x 0.128 + 3 x 5 x
0.032 + 5 x 0.008 = 2.184 bits per string, which equals 0.728 bits per symbol.

As we keep generating longer and longer strings, the probabilities of the strings dif-
fer more and more from their average, and the average code size gets better (Table 3.1c).
This is why a compression method that compresses strings, rather than individual sym-
bols, can, in principle, yield better results. This is also the reason why the various
dictionary-based methods are in general better and more popular than the Huffman
method and its variants (see also Section 4.14). The above conclusion is a fundamental
result of rate-distortion theory, that part of information theory that deals with data
compression.

3.2 Simple Dictionary Compression

The topic of this section is a simple, two-pass method, related to me by Ismail Mohamed
(see Preface to the 3rd edition). The first pass reads the source file and prepares a list
of all the different bytes found. The second pass uses this list to actually compress the
data bytes. Here are the steps in detail.

1. The source file is read and a list is prepared of the distinct bytes encountered.
For each byte, the number of times it occurs in the source file (its frequency) is also
included in the list.

2. The list is sorted in descending order of the frequencies. Thus, it starts with
byte values that are common in the file, and it ends with bytes that are rare. Since the
list consists of distinct bytes, it can have at most 256 elements.

3. The sorted list becomes the dictionary. It is written on the compressed file,
preceded by its length (a 1-byte integer).

4. The source file is read again byte by byte. Each byte is located in the dictionary
(by a direct search) and its index is noted. The index is a number in the interval [0, 255],
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so it requires between 1 and 8 bits (but notice that most indexes will normally be small
numbers because common byte values are stored early in the dictionary). The index is
written on the compressed file, preceded by a 3-bit code denoting the index’s length.
Thus, code 000 denotes a 1-bit index, code 001 denotes a 2-bit index, and so on up to
code 111, which denotes an 8-bit index.

The compressor maintains a short, 2-byte buffer where it collects the bits to be
written on the compressed file. When the first byte of the buffer is filled, it is written
on the file and the second byte is moved to the first byte.

Decompression is straightforward. The decompressor starts by reading the length
of the dictionary, then the dictionary itself. It then decodes each byte by reading its
3-bit code, followed by its index value. The index is used to locate the next data byte
in the dictionary.

Compression is achieved because the dictionary is sorted by the frequency of the
bytes. Each byte is replaced by a quantity of between 4 and 11 bits (a 3-bit code followed
by 1 to 8 bits). A 4-bit quantity corresponds to a compression ratio of 0.5, while an
11-bit quantity corresponds to a compression ratio of 1.375, an expansion. The worst
case is a file where all 256 byte values occur and have a uniform distribution. The
compression ratio in such a case is the average

(2x4+2x5+4x64+8xT+16x8+32x9+64x10+ 128 x 11)/(256 x 8)
= 2562/2048 = 1.2509765625,

indicating expansion! (Actually, slightly worse than 1.25, because the compressed file
also includes the dictionary, whose length in this case is 257 bytes.) Experience indicates
typical compression ratios of about 0.5.

The probabilities used here were obtained by counting the numbers of codes of
various sizes. Thus, there are two 4-bit codes 0000 and 000|1, two 5-bit codes 001]|10
and 00111, four 6-bit codes 010]100, 010|101, 010|110 and 010|111, eight 7-bit codes
011/1000, 011|1001, 011|1010, 011]1011, 011|1100, 011]1101, 011]|1110, and 011]1111,
and so on, up to 128 11-bit codes.

The downside of the method is slow compression; a result of the two passes the
compressor performs combined with the slow search (slow, because the dictionary is not
sorted by byte values, so binary search cannot be used). Decompression, in contrast, is
not slow.

o Exercise 3.2: Design a reasonable organization for the list maintained by this method.

Of these the Mont Genevre and the Brenner were the most frequented,
while it will be noticed that in the Central Alps only two passes
(the Splugen and the Septimer) were certainly known to the Romans.

(1911 Encyclopedia entry for “Principal Passes”)
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3.3 LZ77 (Sliding Window)

The principle of this method (which is sometimes referred to as LZ1) [Ziv and Lem-
pel 77] is to use part of the previously-seen input stream as the dictionary. The encoder
maintains a window to the input stream and shifts the input in that window from right
to left as strings of symbols are being encoded. Thus, the method is based on a sliding
window. The window below is divided into two parts. The part on the left is the search
buffer. This is the current dictionary, and it includes symbols that have recently been
input and encoded. The part on the right is the look-ahead buffer, containing text yet to
be encoded. In practical implementations the search buffer is some thousands of bytes
long, while the look-ahead buffer is only tens of bytes long. The vertical bar between
the t and the e below represents the current dividing line between the two buffers. We
assume that the text sir;;sid eastman easily,t has already been compressed, while
the text eases sea_sickyseals still needs to be compressed.

«— coded text. . . [sirusidueastman,_,easilyut‘easesuseausickuseals]. .. < text to be read

The encoder scans the search buffer backwards (from right to left) looking for a
match for the first symbol e in the look-ahead buffer. It finds one at the e of the word
easily. This e is at a distance (offset) of 8 from the end of the search buffer. The
encoder then matches as many symbols following the two e’s as possible. Three symbols
eas match in this case, so the length of the match is 3. The encoder then continues the
backward scan, trying to find longer matches. In our case, there is one more match, at
the word eastman, with offset 16, and it has the same length. The encoder selects the
longest match or, if they are all the same length, the last one found, and prepares the
token (16, 3, e).

Selecting the last match, rather than the first one, simplifies the encoder, because it
only has to keep track of the last match found. It is interesting to note that selecting the
first match, while making the program somewhat more complex, also has an advantage.
It selects the smallest offset. It would seem that this is not an advantage, because a token
should have room for the largest possible offset. However, it is possible to follow LZ77
with Huffman, or some other statistical coding of the tokens, where small offsets are
assigned shorter codes. This method, proposed by Bernd Herd, is called LZH. Having
many small offsets implies better compression in LZH.

Exercise 3.3: How does the decoder know whether the encoder selects the first match
or the last match?

In general, an LZ77 token has three parts: offset, length, and next symbol in the
look-ahead buffer (which, in our case, is the second e of the word teases). This token
is written on the output stream, and the window is shifted to the right (or, alternatively,
the input stream is moved to the left) four positions: three positions for the matched
string and one position for the next symbol.

...sir |sid eastman easily jtease[s,sea sickyseals...]...

If the backward search yields no match, an LZ77 token with zero offset and length
and with the unmatched symbol is written. This is also the reason a token has a third
component. Tokens with zero offset and length are common at the beginning of any
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compression job, when the search buffer is empty or almost empty. The first five steps
in encoding our example are the following:

l [sir_sid_eastman] = (0,0,“s”)
[ s[ir_sid eastman_ ¢ = (0,0,“i")
[ silr_sid eastman_ ea = (0,0,"r”)
[ sir| sid eastman eas = (0,0,“L7)
[ sir,[sid eastman easi] = (4,2,“d”)

Exercise 3.4: What are the next two steps?

Clearly, a token of the form (0,0,...), which encodes a single symbol, does not
provide good compression. It is easy to estimate its length. The size of the offset is
[log, ST, where S is the length of the search buffer. In practice, the search buffer may
be a few thousand bytes long, so the offset size is typically 10-12 bits. The size of the
“length” field is similarly [logy(L — 1)], where L is the length of the look-ahead buffer
(see below for the —1). In practice, the look-ahead buffer is only a few tens of bytes
long, so the size of the “length” field is just a few bits. The size of the “symbol” field
is typically 8 bits, but in general, it is [log, A], where A is the alphabet size. The total
size of the 1-symbol token (0,0,...) may typically be 11 4+ 5 + 8 = 24 bits, much longer
than the raw 8-bit size of the (single) symbol it encodes.

Here is an example showing why the “length” field may be longer than the size of
the look-ahead buffer:

...Mr. falf eastman easily, grows,alf]alfa in his Jgarden...

The first symbol a in the look-ahead buffer matches the five a’s in the search buffer.
It seems that the two extreme a’s match with a length of 3 and the encoder should
select the last (leftmost) of them and create the token (28,3,“a”). In fact, it creates the
token (3,4,“.”). The four-symbol string alfa in the look-ahead buffer is matched with
the last three symbols alf in the search buffer and the first symbol a in the look-ahead
buffer. The reason for this is that the decoder can handle such a token naturally, without
any modifications. It starts at position 3 of its search buffer and copies the next four
symbols, one by one, extending its buffer to the right. The first three symbols are copies
of the old buffer contents, and the fourth one is a copy of the first of those three. The
next example is even more convincing (and only somewhat contrived):

-+ -[alf eastman easily yells A[AAAAAAAAANAAAAAH. ..

The encoder creates the token (1,9,A), matching the first nine copies of A in the look-
ahead buffer and including the tenth A. This is why, in principle, the length of a match
can be up to the size of the look-ahead buffer minus 1.

The decoder is much simpler than the encoder (LZ77 is therefore an asymmetric
compression method). It has to maintain a buffer, equal in size to the encoder’s window.
The decoder inputs a token, finds the match in its buffer, writes the match and the third
token field on the output stream, and shifts the matched string and the third field into
the buffer. This implies that LZ77, or any of its variants, is useful in cases where a file is
compressed once (or just a few times) and is decompressed often. A rarely-used archive
of compressed files is a good example.
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At first it seems that this method does not make any assumptions about the input
data. Specifically, it does not pay attention to any symbol frequencies. A little thinking,
however, shows that because of the nature of the sliding window, the LZ77 method
always compares the look-ahead buffer to the recently-input text in the search buffer
and never to text that was input long ago (and has therefore been flushed out of the
search buffer). Thus, the method implicitly assumes that patterns in the input data
occur close together. Data that satisfies this assumption will compress well.

The basic LZ77 method was improved in several ways by researchers and program-
mers during the 1980s and 1990s. One way to improve it is to use variable-size “offset”
and “length” fields in the tokens. Another way is to increase the sizes of both buffers.
Increasing the size of the search buffer makes it possible to find better matches, but the
trade-off is an increased search time. A large search buffer therefore requires a more
sophisticated data structure that allows for fast search (Section 3.12.2). A third im-
provement has to do with sliding the window. The simplest approach is to move all
the text in the window to the left after each match. A faster method is to replace the
linear window with a circular queue, where sliding the window is done by resetting two
pointers (Section 3.3.1). Yet another improvement is adding an extra bit (a flag) to each
token, thereby eliminating the third field (Section 3.4). Of special notice is the hash
table employed by the Deflate algorithm (Section 3.23.3) to search for matches.

3.3.1 A Circular Queue

The circular queue is a basic data structure. Physically, it is a linear array, but it is used
as a circular array. Figure 3.2 illustrates a simple example. It shows a 16-byte array
with characters appended at the “end” and deleted from the “start.” Both the start
and end positions move, and two pointers, s and e, point to them all the time. In (a)
the queue consists of the eight characters sid, east, with the rest of the buffer empty.
In (b) all 16 bytes are occupied, and e points to the end of the buffer. In (c), the first
letter s has been deleted and the 1 of easily inserted. Notice how pointer e is now
located to the left of s. In (d), the two letters id have been deleted just by moving the s
pointer; the characters themselves are still present in the array but have been effectively
deleted. In (e), the two characters y_, have been appended and the e pointer moved. In
(f), the pointers show that the buffer ends at teas and starts at tman. Inserting new
characters into the circular queue and moving the pointers is thus equivalent to shifting
the contents of the queue. No actual shifting or moving is necessary, though.

[sid east | [sid eastman easi] [1id ,eastman easi]
7 T T T m
S e S e es

(a) (b) (c)
[1id_eastman easi |1y|_”_,eastmanl_,easi |1y|_,teastmanueasi
T m m
e s es es

(d) (e) £

Figure 3.2: A Circular Queue.
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More information on circular queues can be found in most texts on data structures.

From the dictionary

Circular. (1) Shaped like or nearly like a circle. (2) Defining one word in terms
of another that is itself defined in terms of the first word. (3) Addressed or
distributed to a large number of persons.

3.4 LZSS

LZSS is an efficient variant of LZ77 developed by Storer and Szymanski in 1982 [Storer
and Szymanski 82]. It improves LZ77 in three directions: (1) It holds the look-ahead
buffer in a circular queue, (2) it holds the search buffer (the dictionary) in a binary
search tree, and (3) it creates tokens with two fields instead of three.

A binary search tree is a binary tree where the left subtree of every node A contains
nodes smaller than A, and the right subtree contains nodes greater than A. Since the
nodes of our binary search trees contain strings, we first need to know how to compare
two strings and decide which one is “bigger.” This is easily understood by imagining
that the strings appear in a dictionary or a lexicon, where they are sorted alphabetically.
Clearly, the string rote precedes the string said since r precedes s (even though o follows
a), so we consider rote smaller than said. This concept is called lexicographic order
(ordering strings lexicographically).

What about the string _abc? Most modern computers use ASCII codes to repre-
sent characters (although more and more use Unicode, discussed in Section 8.12, and
some older IBM, Amdahl, Fujitsu, and Siemens mainframe computers use the old, 8-bit
EBCDIC code developed by IBM), and in ASCII the code of a blank space precedes
those of the letters, so a string that starts with a space will be smaller than any string
that starts with a letter. In general, the collating sequence of the computer determines
the sequence of characters arranged from small to big. Figure 3.3 shows two examples
of binary search trees.

Notice the difference between the (almost) balanced tree in Figure 3.3a and the
skewed one in Figure 3.3b. They contain the same 14 nodes, but they look and behave
very differently. In the balanced tree any node can be found in at most four steps. In
the skewed tree up to 14 steps may be needed. In either case, the maximum number of
steps needed to locate a node equals the height of the tree. For a skewed tree (which is
really the same as a linked list), the height is the number of elements n; for a balanced
tree, the height is [log, n], a much smaller number. More information on the properties
of binary search trees may be found in any text on data structures.

Here is an example showing how a binary search tree can be used to speed up
the search of the dictionary. We assume an input stream with the short sentence
sid eastman ,clumsily, jteases sea sick seals. To keep the example simple, we as-
sume a window of a 16-byte search buffer followed by a 5-byte look-ahead buffer. After
the first 16 + 5 characters have been input, the sliding window is

lsid eastman,clum[sily jteases sea;sick seals

with the string teases sea sickseals still waiting to be input.
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mine
from slow
come left plug step slow
] R stay
brim fast hers obey slam stay went
step
(a) (b) went

Figure 3.3: Two Binary Search Trees.

The encoder scans the search buffer, creating the 12 five-character strings of Ta-
ble 3.4 (12 since 16 — 5 + 1 = 12), which are inserted into the binary search tree, each
with its offset.

sid e 16
idea 15
d_eas 14
peast 13
eastm 12
astma 11
stman 10
tman,, 09
man,,c 08
an,cl 07
n,clu 06
uclum 05

Table 3.4: Five-Character Strings.

The first symbol in the look-ahead buffer is s, so the encoder searches the tree for
strings that start with an s. Two are found, at offsets 16 and 10, and the first of them,
sid e (at offset 16) provides a longer match.

(We now have to sidetrack and discuss the case where a string in the tree completely
matches that in the look-ahead buffer. In that case the encoder should go back to the
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search buffer, to attempt to match longer strings. In principle, the maximum length of
a match can be L —1.)

In our example, the match is of length 2, and the 2-field token (16,2) is emitted.
The encoder now has to slide the window two positions to the right, and update the
tree. The new window is

sifd eastman clumsi[ly telases sea sick,seals

The tree should be updated by deleting strings sid e and id jea, and inserting the new
strings clums and lumsi. If a longer, k-letter, string is matched, the window has to be
shifted k positions, and the tree should be updated by deleting k strings and adding k
new strings, but which ones?

A little thinking shows that the k strings to be deleted are the first ones in the
search buffer before the shift, and the k strings to be added are the last ones in it after
the shift. A simple procedure for updating the tree is to prepare a string consisting of
the first five letters in the search buffer, find it in the tree, and delete it. Then slide the
buffer one position to the right (or shift the data to the left), prepare a string consisting
of the last five letters in the search buffer, and append it to the tree. This should be
repeated k times.

Since each update deletes and adds the same number of strings, the tree size never
changes. It always contains T nodes, where T is the length of the search buffer minus
the length of the look-ahead buffer plus 1 (T' = S — L + 1). The shape of the tree,
however, may change significantly. As nodes are being added and deleted, the tree may
change its shape between a completely skewed tree (the worst case for searching) and a
balanced one, the ideal shape for searching.

The third improvement of LZSS over LZ77 is in the tokens created by the encoder.
An LZSS token contains just an offset and a length. If no match was found, the encoder
emits the uncompressed code of the next symbol instead of the wasteful three-field token
(0,0,...). To distinguish between tokens and uncompressed codes, each is preceded by
a single bit (a flag).

In practice, the search buffer may be a few thousand bytes long, so the offset field
would typically be 11-13 bits. The size of the look-ahead buffer should be selected such
that the total size of a token would be 16 bits (2 bytes). For example, if the search buffer
size is 2 Kbyte (= 2!!), then the look-ahead buffer should be 32 bytes long (= 2°). The
offset field would be 11 bits long and the length field, 5 bits (the size of the look-ahead
buffer). With this choice of buffer sizes the encoder will emit either 2-byte tokens or
1-byte uncompressed ASCII codes. But what about the flag bits? A good practical idea
is to collect eight output items (tokens and ASCII codes) in a small buffer, then output
one byte consisting of the eight flags, followed by the eight items (which are 1 or 2 bytes
long each).

3.4.1 LZARI

The following is quoted from [Okumura 98].

During the summer of 1988, I [Haruhiko Okumura] wrote another compression
program, LZARI. This program is based on the following observation: Each output of
LZSS is either a single character or a (position,length) pair. A single character can
be coded as an integer between 0 and 255. As for the (length) field, if the range of
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(length) is 2 to 257, say, it can be coded as an integer between 256 and 511. Thus,
I can say that there are 512 kinds of “characters,” and the “characters” 256 through
511 are accompanied by a (position) field. These 512 “characters” can be Huffman-
coded, or better still, algebraically coded. The (position) field can be coded in the same
manner. In LZARI, I used an adaptive algebraic compression to encode the “characters,”
and static algebraic compression to encode the (position) field. (There were several
versions of LZARI; some of them were slightly different from the above description.)
The compression of LZARI was very tight, though rather slow.

3.4.2 Deficiencies

Before we discuss LZ78, let’s summarize the deficiencies of LZ77 and its variants. It has
already been mentioned that LZ77 uses the built-in implicit assumption that patterns
in the input data occur close together. Data streams that don’t satisfy this assumption
compress poorly. A common example is text where a certain word, say economy, occurs
often but is uniformly distributed throughout the text. When this word is shifted into
the look-ahead buffer, its previous occurrence may have already been shifted out of
the search buffer. A better algorithm would save commonly-occurring strings in the
dictionary and not simply slide it all the time.

Another disadvantage of LZ77 is the limited size L of the look-ahead buffer. The
size of matched strings is limited to L — 1, but L must be kept small because the process
of matching strings involves comparing individual symbols. If L were doubled in size,
compression would improve, since longer matches would be possible, but the encoder
would be much slower when searching for long matches. The size S of the search buffer
is also limited. A large search buffer results in better compression but slows down the
encoder, because searching takes longer (even with a binary search tree). Increasing the
sizes of the two buffers also means creating longer tokens, thereby reducing compression
efficiency. With 2-byte tokens, compressing a 2-character string into one token results
in 2 bytes plus 1 flag. Writing the two characters as two raw ASCII codes results in 2
bytes plus 2 flags, a very small difference in size. The encoder should, in such a case,
use the latter choice and write the two characters in uncompressed form, saving time
and wasting just one bit. We say that the encoder has a 2-byte breakeven point. With
longer tokens, the breakeven point increases to three bytes.

3.5 Repetition Times

Frans Willems, one of the developers of context-tree weighting (Section 2.19), is also
the developer of this original (although not very efficient) dictionary-based method.
The input may consist of any symbols, but the method is described here and also in
[Willems 89] for binary input. The input symbols are grouped into words of length L
each that are placed in a sliding buffer. The buffer is divided into a look-ahead buffer
with words still to be compressed, and a search buffer containing the B most-recently
processed words. The encoder tries to match the leftmost word in the look-ahead buffer
to the contents of the search buffer. Only one word in the look-ahead buffer is matched
in each step. If a match is found, the distance (offset) of the word from the start of
the match is denoted by m and is encoded by a 2-part prefix code that’s written on
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the compressed stream. Notice that there is no need to encode the number of symbols
matched, because exactly one word is matched. If no match is found, a special code is
written, followed by the L symbols of the unmatched word in raw format.

The method is illustrated by a simple example. We assume that the input symbols
are bits. We select L = 3 for the length of words, and a search buffer of length B =
2% — 1 = 7 containing the seven most-recently processed bits. The look-ahead buffer
contains just the binary data, and the commas shown here are used only to indicate
word boundaries.

« coded input. . .[0100100[100,000,011,111,011,101,001]. . . < input to be read

It is obvious that the leftmost word “100” in the look-ahead buffer matches the
rightmost three bits in the search buffer. The repetition time (the offset) for this word
is therefore m = 3. (The biggest repetition time is the length B of the search buffer, 7
in our example.) The buffer is now shifted one word (three bits) to the left to become

— ...0100100100[000,011,111,011,101,001,...]... < input to be read

The repetition time for the current word “000” is m = 1 because each bit in this
word is matched with the bit immediately to its left. Notice that it is possible to match
the leftmost 0 of the next word “011” with the bit to its left, but this method matches
exactly one word in each step. The buffer is again shifted L positions to become

— ...0100100100000[011,111,011,101,001,...... | .. < input to be read

There is no match for the next word “011” in the search buffer, so m is set to a
special value that we denote by 8* (meaning; greater than or equal 8). It is easy to
verify that the repetition times of the remaining three words are 6, 4, and 8*.

Each repetition time is encoded by first determining two integers p and q. If m = 8*,
then p is set to L; otherwise p is selected as the integer that satisfies 2P < m < 2P+1,
Notice that p is located in the interval [0, L — 1]. The integer ¢ is determined by ¢ =
m — 2P which places it in the interval [0,2P — 1]. Table 3.5 lists the values of m, p, g,
and the prefix codes used for L = 3.

m p q Prefix Suffix Length
1 0 O 00 nonme 2
2 1 0 01 0 3
3 1 1 01 1 3
4 2 0 10 00 4
5 2 1 10 01 4
6 2 2 10 10 4
T 2 3 10 11 4
8* 3 — 11 word 5

Table 3.5: Repetition Time Encoding Table for L = 3.

Once p and ¢ are known, a prefix code for m is constructed and is written on the
compressed stream. It consists of two parts, a prefix and a suffix, that are the binary
values of p and g, respectively. Since p is in the interval [0, L — 1], the prefix requires
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log(L + 1) bits. The length of the suffix is p bits. The case p = L is different. Here, the
suffix is the raw value (L bits) of the word being compressed.
The compressed stream for the seven words of our example consists of the seven
codes
01|1,00, 11]011, 00, 10|10, 10|00, 11|001, ...,

where the vertical bars separate the prefix and suffix of a code. Notice that the third
and seventh words (011 and 001) are included in the codes in raw format.

It is easy to see why this method generates prefix codes. Once a code has been
assigned (such as 01]0, the code of m = 2), that code cannot be the prefix of any other
code because (1) some of the other codes are for different values of p and thus do not
start with 01, and (2) codes for the same p do start with 01 but must have different
values of ¢, so they have different suffixes.

The compression performance of this method is inferior to that of LZ77, but it is
interesting for the following reasons.

1. It is universal and optimal. It does not use the statistics of the input stream, and
its performance asymptotically approaches the entropy of the input as the input stream
gets longer.

2. Tt is shown in [Cachin 98] that this method can be modified to include data hiding
(steganography).

3.6 QIC-122

QIC is an international trade association, incorporated in 1987, whose mission is to
encourage and promote the widespread use of quarter-inch tape cartridge technology
(hence the acronym QIC; see also http://www.qic.org/html).

The QIC-122 compression standard is an LZ77 variant that has been developed by
QIC for text compression on 1/4-inch data cartridge tape drives. Data is read and shifted
into a 2048-byte (= 2'') input buffer from right to left, such that the first character is
the leftmost one. When the buffer is full, or when all the data has been read into it,
the algorithm searches from left to right for repeated strings. The output consists of
raw characters and of tokens that represent strings already seen in the buffer. As an
example, suppose that the following data have been read and shifted into the buffer:

[ABAAAAAACABABABA............... |

The first character A is obviously not a repetition of any previous string, so it is encoded
as a raw (ASCII) character (see below). The next character B is also encoded as raw.
The third character A is identical to the first character but is also encoded as raw since
repeated strings should be at least two characters long. Only with the fourth character
A we do have a repeated string. The string of five A’s from position 4 to position 8 is
identical to the one from position 3 to position 7. It is therefore encoded as a string of
length 5 at offset 1. The offset in this method is the distance between the start of the
repeated string and the start of the original one.

The next character C at position 9 is encoded as raw. The string ABA at positions
10-12 is a repeat of the string at positions 1-3, so it is encoded as a string of length 3
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at offset 10 — 1 = 9. Finally, the string BABA at positions 13-16 is encoded with length
4 at offset 2, since it is a repetition of the string at positions 10-13.

o Exercise 3.5: Suppose that the next four characters of data are CAAC

[ABAAAAAACABABABACAAC............ |

How will they be encoded?

A raw character is encoded as 0 followed by the 8 ASCII bits of the character. A
string is encoded as a token that starts with 1 followed by the encoded offset, followed
by the encoded length. Small offsets are encoded as 1, followed by 7 offset bits; large
offsets are encoded as 0 followed by 11 offset bits (recall that the buffer size is 2'!). The
length is encoded according to Table 3.6. The 9-bit string 110000000 is written, as an
end marker, at the end of the output stream.

Bytes Length Bytes Length

2 00 17 11 11 1001

3 01 18 11 11 1010

4 10 19 11 11 1011

5 11 00 20 11 11 1100

6 11 01 21 11 11 1101

7 11 10 22 11 11 1110

8 11 11 0000 23 11 11 1111 0000

9 11 11 0001 24 11 11 1111 0001

10 11 11 0010 25 11 11 1111 0010

11 11 11 0011 :

12 11 11 0100 37 11 11 1111 1110

13 11 11 0101 38 11 11 1111 1111 0000
14 11 11 0110 39 11 11 1111 1111 0001
15 11 11 0111 ete.

16 11 11 1000

Table 3.6: Values of the <length> Field.

o Exercise 3.6: How can the decoder identify the end marker?

When the search algorithm arrives at the right end of the buffer, it shifts the buffer
to the left and inputs the next character into the rightmost position of the buffer. The
decoder is the reverse of the encoder (symmetric compression).

When I saw each luminous creature in profile, from the point of view of its body, its
egglike shape was like a gigantic asymmetrical yoyo that was standing edgewise, or
like an almost round pot that was resting on its side with its lid on. The part that
looked like a lid was the front plate; it was perhaps one-fifth the thickness of the total
cocoon.

—Carlos Castaneda, The Fire From Within (1984)
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Figure 3.7 is a precise description of the compression process, expressed in BNF,
which is a metalanguage used to describe processes and formal languages unambiguously.
BNF uses the following metasymbols:

1= The symbol on the left is defined by the expression on the right.
<expr> An expression still to be defined.
| A logical OR.

[ Optional. The expression in the brackets may occur zero or more times.
O A comment.
0,1 The bits 0 and 1.

(Special applications of BNF may require more symbols.)

(QIC-122 BNF Description)
<Compressed-Stream>: :=[<Compressed-String>] <End-Marker>

<Compressed-String>::= O<Raw-Byte> | 1<Compressed-Bytes>
<Raw-Byte> 1 :=<b><b><b><b><b><b><b><b> (8-bit byte)
<Compressed-Bytes> ::=<offset><length>

<offset> ::= 1<b><b><b><b><b><b><b> (a 7-bit offset)

|
0<b><b><b><b><b><b><b><b><b><b><b> (an 11-bit offset)
<length> ::= (as per length table)
<End-Marker> 110000000 (Compressed bytes with offset=0)
<b> 1:=0]1

Figure 3.7: BNF Definition of QIC-122.

Table 3.8 shows the results of encoding ABAAAAAACABABABA (a 16-symbol string).
The reader can easily verify that the output stream consists of the 10 bytes

20 90 88 38 1C 21 E2 5C 15 80.

Raw byte “A” 0 01000001

Raw byte “B” 0 01000010

Raw byte “A” 0 01000001
String “AAAAA” offset=1 1 1 0000001 1100
Raw byte “C” 0 01000011
String “ABA” offset=9 110001001 01
String “BABA” offset=2 11 0000010 10
End-Marker 1 1 0000000

Table 3.8: Encoding the Example.
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3.7 LZX

In 1995, Jonathan Forbes and Tomi Poutanen developed an LZ variant (possibly in-
fluenced by Deflate) that they dubbed LZX. The main feature of the first version of
LZX was the way it encoded the match offsets, which can be large, by segmenting the
size of the search buffer. They implemented LZX on the Amiga personal computer and
included a feature where data was grouped into large blocks instead of being compressed
as a single unit.

At about the same time, Microsoft devised a new installation media format that
it termed, in analogy to a file cabinet, cabinet files. A cabinet file has an extension
name of .cab and may consist of several data files concatenated into one unit and
compressed. Initially, Microsoft used two compression methods to compress cabinet
files, MSZIP (which is just another name for Deflate) and Quantum, a large-window
dictionary-based encoder that employs arithmetic coding. Quantum was developed by
David Stafford.

Microsoft later used cabinet files in its Cabinet Software Development Kit (SDK).
This is a software package that provides software developers with the tools required to
employ cabinet files in any applications that they implement.

In 1997, Jonathan Forbes went to work for Microsoft and modified LZX to compress
cabinet files. Microsoft published an official specification for cabinet files, including
MSZIP and LZX, but excluding Quantum. The LZX description contained errors to
such an extent that it wasn’t possible to create a working implementation from it.

LZX documentation is available in executable file Cabsdk.exe located at http://
download.microsoft.com/download/platformsdk/cab/2.0/w98nt42kmexp/en-us/.
After unpacking this executable file, the documentation is found in file LZXFMT.DOC.

LZX is a variant of LZ77 that writes on the compressed stream either unmatched
characters or pairs (offset, length). What is actually written on the compressed stream
is variable-size codes for the unmatched characters, offsets, and lengths. The size of the
search buffer is a power of 2, between 2'° and 22'. LZX uses static canonical Huffman
trees (Section 2.8.6) to provide variable-size, prefix codes for the three types of data.
There are 256 possible character values, but there may be many different offsets and
lengths. Thus, the Huffman trees have to be large, but any particular cabinet file being
compressed by LZX may need just a small part of each tree. Those parts are written
on the compressed stream. Because a single cabinet file may consist of several data
files, each is compressed separately and is written on the compressed stream as a block,
including those parts of the trees that it requires. The other important features of LZX
are listed here.

Repeated offsets. The developers of LZX noticed that certain offsets tend to
repeat; i.e., if a certain string is compressed to a pair (74, length), then there is a good
chance that offset 74 will be used again soon. Thus, the three special codes 0, 1, and 2
were allocated to encode three of the most-recent offsets. The actual offset associated
with each of those codes varies all the time. We denote by R0, R1, and R2 the most-
recent, second most-recent, and third most-recent offsets, respectively (these offsets must
themselves be nonrepeating; i.e., none should be 0, 1, or 2). We consider R0, R1, and
R2 a short list and update it similar to an LRU (least-recently used) queue. The three
quantities are initialized to 1 and are updated as follows. Assume that the current offset
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is X, then

if X # RO and X # R1 and X # R2, then R2 «— R1, Rl «— R0, RO +— X,
if X = RO, then nothing,
if X = R1, then swap R0 and R1,
if X = R2, then swap R0 and R2.

Because codes 0, 1, and 2 are allocated to the three special recent offsets, an offset of 3
is allocated code 5, and, in general, an offset x is assigned code = + 2. The largest offset
is the size of the search buffer minus 3, and its assigned code is the size of the search
buffer minus 1.

Encoder preprocessing. LZX was designed to compress Microsoft cabinet files,
which are part of the Windows operating system. Computers using this system are
generally based on microprocessors made by Intel, and throughout the 1980s and 1990s,
before the introduction of the pentium, these microprocessors were members of the well-
known 80x86 family. The encoder preprocessing mode of LZX is selected by the user
when the input stream is an executable file for an 80x86 computer. This mode converts
80x86 CALL instructions to use absolute instead of relative addresses.

Output block format. LZX outputs the compressed data in blocks, where each
block contains raw characters, offsets, match lengths, and the canonical Huffman trees
used to encode the three types of data. A canonical Huffman tree can be reconstructed
from the path length of each of its nodes. Thus, only the path lengths have to be written
on the output for each Huffman tree. LZX limits the depth of a Huffman tree to 16,
so each tree node is represented on the output by a number in the range 0 to 16. A
0 indicates a missing node (a Huffman code that’s not used by this block). If the tree
has to be bigger, the current block is written on the output and compression resumes
with fresh trees. The tree nodes are written in compressed form. If several consecutive
tree nodes are identical, then run-length encoding is used to encode them. The three
numbers 17, 18, and 19 are used for this purpose. Otherwise the difference (modulo 17)
between the path lengths of the current node and the previous node is written. This
difference is in the interval [0,16]. Thus, what’s written on the output are the 20 5-bit
integers 0 through 19, and these integers are themselves encoded by a Huffman tree
called a pre-tree. The pre-tree is generated dynamically according to the frequencies of
occurrence of the 20 values. The pre-tree itself has to be written on the output, and it
is written as 20 4-bit integers (a total of 80 bits) where each integer indicates the path
length of one of the 20 tree nodes. A path of length zero indicates that one of the 20
values is not used in the current block.

The offsets and match lengths are themselves compressed in a complex process that
involves several steps and is summarized in Figure 3.9. The individual steps involve
many operations and use several tables that are built into both encoder and decoder.
However, because LZX is not an important compression method, these steps are not
discussed here.
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Figure 3.9: LZX Processing of Offsets and Lengths.

3.8 LZ78

The LZ78 method (which is sometimes referred to as LZ2) [Ziv and Lempel 78] does
not use any search buffer, look-ahead buffer, or sliding window. Instead, there is a
dictionary of previously encountered strings. This dictionary starts empty (or almost
empty), and its size is limited only by the amount of available memory. The encoder
outputs two-field tokens. The first field is a pointer to the dictionary; the second is the
code of a symbol. Tokens do not contain the length of a string, since this is implied in the
dictionary. Each token corresponds to a string of input symbols, and that string is added
to the dictionary after the token is written on the compressed stream. Nothing is ever
deleted from the dictionary, which is both an advantage over LZ77 (since future strings
can be compressed even by strings seen in the distant past) and a liability (because the
dictionary tends to grow fast and to fill up the entire available memory).

The dictionary starts with the null string at position zero. As symbols are input
and encoded, strings are added to the dictionary at positions 1, 2, and so on. When the
next symbol x is read from the input stream, the dictionary is searched for an entry with
the one-symbol string x. If none are found, x is added to the next available position in
the dictionary, and the token (0,x) is output. This token indicates the string “null x”
(a concatenation of the null string and x). If an entry with x is found (at, say, position
37), the next symbol y is read, and the dictionary is searched for an entry containing the
two-symbol string xy. If none are found, then string xy is added to the next available
position in the dictionary, and the token (37,y) is output. This token indicates the
string xy, since 37 is the dictionary position of string x. The process continues until the
end of the input stream is reached.
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In general, the current symbol is read and becomes a one-symbol string. The
encoder then tries to find it in the dictionary. If the symbol is found in the dictionary,
the next symbol is read and concatenated with the first to form a two-symbol string that
the encoder then tries to locate in the dictionary. As long as those strings are found
in the dictionary, more symbols are read and concatenated to the string. At a certain
point the string is not found in the dictionary, so the encoder adds it to the dictionary
and outputs a token with the last dictionary match as its first field, and the last symbol
of the string (the one that caused the search to fail) as its second field. Table 3.10 shows
the first 14 steps in encoding the string

“sir;;sid eastman easily t eases ;sea ;sick seals”.

Dictionary  Token Dictionary  Token
0 null

1 “g” (0,4s”) 8 “a” (0,“a”)
2 Aéi” (O,Lti”) 9 “St” (l’ttt”)
3 “r’ (0,“c™) 10 “m” (0,“m”)
4 (0,4.™) 11  “an” (8,“n”)
5 “si” (1,%1”) 12 “Lea” (7,“a”)
6 “q’ (0,4d”) 13 “si1l”  (5,“1”)
7 “‘_,e,’ (4,“6”) 14 “y” (07 Hy”)

Table 3.10: First 14 Encoding Steps in LZ78.

o Exercise 3.7: Complete Table 3.10.

In each step, the string added to the dictionary is the one being encoded, minus
its last symbol. In a typical compression run, the dictionary starts with short strings,
but as more text is being input and processed, longer and longer strings are added to
it. The size of the dictionary can either be fixed or may be determined by the size
of the available memory each time the LZ78 compression program is executed. A large
dictionary may contain more strings and thus allow for longer matches, but the trade-off
is longer pointers (and thus bigger tokens) and slower dictionary search.

A good data structure for the dictionary is a tree, but not a binary tree. The tree
starts with the null string as the root. All the strings that start with the null string
(strings for which the token pointer is zero) are added to the tree as children of the root.
In the above example those are s, i, r, |, d, a, m, y, e, ¢, and k. Each of them becomes
the root of a subtree as shown in Figure 3.11. For example, all the strings that start
with s (the four strings si, sil, st, and s(eof)) constitute the subtree of node s.

Assuming an alphabet with 8-bit symbols, there are 256 different symbols, so in
principle, each node in the tree could have up to 256 children. The process of adding
a child to a tree node should thus be dynamic. When the node is first created, it has
no children and it should not reserve any memory space for them. As a child is added
to the node, memory space should be claimed for it. Since no nodes are ever deleted,
there is no need to reclaim memory space, which simplifies the memory management
task somewhat.



3.8 LZ78 191

null
| ]
4- 8-a 22-c 6-d 16-e 2-i 23-k 10-m 3-r 1-s 1l4-y
\ } | \ } | \ ‘ \
19-s 7-e 15-t 25-1 11-n 17-s 20-a 18-s 26-eof 5-1 9-t
24-e  21-1i 12-a 131

Figure 3.11: An LZ78 Dictionary Tree.

Such a tree makes it easy to search for a string and to add strings. To search for
sil, for example, the program looks for the child s of the root, then for the child i of
s, and so on, going down the tree. Here are some examples:

1. When the s of sid is input in step 5, the encoder finds node “1-s” in the tree as a
child of “null”. Tt then inputs the next symbol i, but node s does not have a child i (in
fact, it has no children at all at this point), so the encoder adds node “5-i” as a child
of “1-s”, which effectively adds the string si to the tree.

2. When the blank space between eastman and easily is input in step 12, a similar
situation happens. The encoder finds node “4-”, inputs e, finds “7-e”, inputs a, but

“7-e” does not have “a” as a child, so the encoder adds node “12-a”, which effectively
adds the string “,ea” to the tree.

A tree of the type described here is called a trie. In general, a trie is a tree in which
the branching structure at any level is determined by just part of a data item, not the
entire item (Section 2.18.5). In the case of LZ78, each string added to the tree effectively
adds just one symbol, and does that by adding a branch.

Since the total size of the tree is limited, it may fill up during compression. This, in
fact, happens all the time except when the input stream is unusually small. The original
LZ78 method does not specify what to do in such a case, so we list a few possible
solutions.

1. The simplest solution is to freeze the dictionary at that point. No new nodes should
be added, the tree becomes a static dictionary, but it can still be used to encode strings.
2. Delete the entire tree once it gets full and start with a new, empty tree. This solution
effectively breaks the input into blocks, each with its own dictionary. If the content of
the input varies from block to block, this solution will produce good compression, since
it will eliminate a dictionary with strings that are unlikely to be used in the future. We
can say that this solution implicitly assumes that future symbols will benefit more from
new data than from old (the same implicit assumption used by LZ77).

3. The UNIX compress utility (Section 3.18) uses a more complex solution.

4. When the dictionary is full, delete some of the least-recently-used entries, to make
room for new ones. Unfortunately there is no good algorithm to decide which entries to
delete, and how many (but see the reuse procedure in Section 3.21).
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The LZ78 decoder works by building and maintaining the dictionary in the same
way as the encoder. It is therefore more complex than the LZ77 decoder.

3.9 LZFG

Edward Fiala and Daniel Greene have developed several related compression methods
[Fiala and Greene 89] that are hybrids of LZ77 and LZ78. All their methods are based on
the following scheme. The encoder generates a compressed file with tokens and literals
(raw ASCII codes) intermixed. There are two types of tokens: a literal and a copy. A
literal token indicates that a string of literals follows, a copy token points to a string
previously seen in the data. The string “the boy_on_my right,is the_ right boy”
produces, when encoded,

(literal 23)the boy on my right is,(copy 4 23)(copy 6 13)(copy 3 29),

where the three copy tokens refer to the strings the,,, right,,, and “boy”, respectively.
The LZFG methods are best understood by considering how the decoder operates. The
decoder starts with a large empty buffer in which it generates and shifts the decompressed
stream. When the decoder inputs a (literal 23) token, it inputs the next 23 bytes as
raw ASCII codes into the buffer, shifting the buffer such that the last byte input will be
the rightmost one. When the decoder inputs (copy 4 23) it copies the string of length 4
that starts 23 positions from the right end of the buffer. The string is then appended to
the buffer, while shifting it. Two LZFG variants, denoted by Al and A2, are described
here.

The A1l scheme employs 8-bit literal tokens and 16-bit copy tokens. A literal token
has the format 0000nnnn, where nnnn indicates the number of ASCII bytes following the
token. Since the 4-bit nnnn field can have values between 0 and 15, they are interpreted
as meaning 1 to 16. The longest possible string of literals is therefore 16 bytes. The
format of a copy token is “sssspp...p”, where the 4-bit nonzero ssss field indicates
the length of the string to be copied, and the 12-bit “pp...p” field is a displacement
showing where the string starts in the buffer. Since the ssss field cannot be zero, it can
have values only between 1 and 15, and they are interpreted as string lengths between
2 and 16. Displacement values are in the range [0,4095] and are interpreted as [1,4096].

The encoder starts with an empty search buffer, 4,096 bytes long, and fills up the
look-ahead buffer with input data. At each subsequent step it tries to create a copy
token. If nothing matches in that step, the encoder creates a literal token. Suppose that
at a certain point the buffer contains

—text already encoded. .[. . . .xyz|abcd. . . .]. .+ text yet to be input

The encoder tries to match the string “abc...” in the look-ahead buffer to various

strings in the search buffer. If a match is found (of at least two symbols), a copy token
is written on the compressed stream and the data in the buffers is shifted to the left by
the size of the match. If a match is not found, the encoder starts a literal with the a and
left-shifts the data one position. It then tries to match “bed...” to the search buffer.
If it finds a match, a literal token is output, followed by a byte with the a, followed by a
match token. Otherwise, the b is appended to the literal and the encoder tries to match
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from “cd..”. Literals can be up to 16 bytes long, so the string “the boy_on my...”
above is encoded as

(literal 16)the boy on my,ri(literal 7)ght,is,(copy 4 23)(copy 6 13)(copy 3 29).

The A1l method borrows the idea of the sliding buffer from LZ77 but also behaves
like LZ78, because it creates two-field tokens. This is why it can be considered a hybrid
of the two original LZ methods. When Al starts, it creates mostly literals, but when it
gets up to speed (fills up its search buffer), it features strong adaptation, so more and
more copy tokens appear in the compressed stream.

The A2 method uses a larger search buffer (up to 21K bytes long). This improves
compression, because longer copies can be found, but raises the problem of token size.
A large search buffer implies large displacements in copy tokens; long copies imply large
“length” fields in those tokens. At the same time we expect both the displacement and
the “length” fields of a typical copy token to be small, since most matches are found
close to the beginning of the search buffer. The solution is to use a variable-size code
for those fields, and A2 uses the general unary codes of Section 2.3.1. The “length” field
of a copy token is encoded with a (2,1,10) code (Table 2.5), making it possible to match
strings up to 2,044 symbols long. Notice that the (2,1,10) code is between 3 and 18 bits
long.

The first four codes of the (2,1, 10) code are 000, 001, 010, and 011. The last three
of these codes indicate match lengths of two, three, and four, respectively (recall that the
minimum match length is 2). The first one (code 000) is reserved to indicate a literal.
The length of the literal then follows and is encoded with code (0,1,5). A literal can
therefore be up to 63 bytes long, and the literal-length field in the token is encoded by
between 1 and 10 bits. In case of a match, the “length” field is not 000 and is followed
by the displacement field, which is encoded with the (10,2,14) code (Table 3.12). This
code has 21K values, and the maximum code size is 16 bits (but see points 2 and 3
below).

a= nth Number of Range of
n 10+ n-2 codeword codewords integers
0 10 0g..x 2"=1K 0-1023
S~
10
1 12 10gz..c 22 =4K 10245119
——

12
2 14 Ngz..xx 2 =16K 5120-21503
—

14
Total 21504
Table 3.12: The General Unary Code (10,2, 14).

Three more refinements are employed by the A2 method, to achieve slightly better
(1% or 2%) compression.

1. A literal of maximum length (63 bytes) can immediately be followed by another literal
or by a copy token of any length, but a literal of fewer than 63 bytes must be followed
by a copy token matching at least three symbols (or by the end-of-file). This fact is used
to shift down the (2,1,10) codes used to indicate the match length. Normally, codes 000,
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001, 010, and 011 indicate no match, and matches of length 2, 3, and 4, respectively.
However, a copy token following a literal token of fewer than 63 bytes uses codes 000,
001, 010, and 011 to indicate matches of length 3, 4, 5, and 6, respectively. This way
the maximum match length can be 2,046 symbols instead of 2,044.

2. The displacement field is encoded with the (10,2, 14) code, which has 21K values
and whose individual codes range in size from 11 to 16 bits. For smaller files, such large
displacements may not be necessary, and other general unary codes may be used, with
shorter individual codes. Method A2 thus uses codes of the form (10 — d,2,14 — d)
for d = 10,9,8,...,0. For d = 1, code (9,2,13) has 29 + 2 4+ 213 = 10,752 values,
and individual codes range in size from 9 to 15 bits. For d = 10 code (0,2,4) contains
20 4 22 4 2% = 21 values, and codes are between 1 and 6 bits long. Method A2 starts
with d = 10 [meaning it initially uses code (0,2,4)] and a search buffer of size 21 bytes.
When the buffer fills up (indicating an input stream longer than 21 bytes), the A2
algorithm switches to d = 9 [code (1,2,5)] and increases the search buffer size to 42
bytes. This process continues until the entire input stream has been encoded or until
d = 0 is reached [at which point code (10,2,14) is used to the end]. A lot of work for
a small gain in compression! (See the discussion of diminishing returns (a word to the
wise) in the Preface.)

3. Each of the codes (10 — d,2,14 — d) requires a search buffer of a certain size, from
21 up to 21K = 21,504 bytes, according to the number of codes it contains. If the user
wants, for some reason, to assign the search buffer a different size, then some of the
longer codes may never be used, which makes it possible to cut down a little the size
of the individual codes. For example, if the user decides to use a search buffer of size
16K = 16,384 bytes, then code (10,2, 14) has to be used [because the next code (9, 2, 13)
contains just 10,752 values]. Code (10,2, 14) contains 21K = 21,504 individual codes, so
the 5,120 longest codes will never be used. The last group of codes (“11” followed by 14
bits) in (10,2, 14) contains 2% = 16, 384 different individual codes, of which only 11,264
will be used. Of the 11,264 codes the first 8,192 can be represented as “11” followed by
|logy 11,264 ] = 13 bits, and only the remaining 3,072 codes require [log, 11,264] = 14
bits to follow the first “11”. We thus end up with 8,192 15-bit codes and 3,072 16-bit
codes, instead of 11,264 16-bit codes, a very small improvement.

These three improvements illustrate the great lengths that researchers are willing
to go to in order to improve their algorithms ever so slightly.

Experience shows that fine-tuning an algorithm to squeeze out the last remain-
ing bits of redundancy from the data gives diminishing returns. Modifying an
algorithm to improve compression by 1% may increase the run time by 10%
(from the Introduction).

The LZFG “corpus” of algorithms contains four more methods. B1 and B2 are sim-
ilar to A1l and A2 but faster because of the way they compute displacements. However,
some compression ratio is sacrificed. C1 and C2 go in the opposite direction. They
achieve slightly better compression than A1l and A2 at the price of slower operation.
(LZFG has been patented, an issue that’s discussed in Section 3.30.)
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3.10 LZRW1

Developed by Ross Williams [Williams 91a] and [Williams 91b] as a simple, fast LZ77
variant, LZRW1 is also related to method Al of LZFG (Section 3.9). The main idea is
to find a match in one step, using a hash table. This is fast but not very efficient, since
the match found is not always the longest. We start with a description of the algorithm,
follow with the format of the compressed stream, and conclude with an example.

The method uses the entire available memory as a buffer and encodes the input
stream in blocks. A block is read into the buffer and is completely encoded, then the
next block is read and encoded, and so on. The length of the search buffer is 4K and
that of the look-ahead buffer is 16 bytes. These two buffers slide along the input block in
memory from left to right. Only one pointer, p_src, needs be maintained, pointing to the
start of the look-ahead buffer. The pointer p_src is initialized to 1 and is incremented
after each phrase is encoded, thereby moving both buffers to the right by the length of
the phrase. Figure 3.13 shows how the search buffer starts empty, grows to 4K, and
then starts sliding to the right, following the look-ahead buffer.

N
look-ahead not encoded yet
buffer (16)

initial
p-src

look-ahead not encoded yet
buffer (16)
p-src

small search buffer

already encoded look-ahead  Rot encoded yet
buffer (16)

search buffer (4096)

p-src

Figure 3.13: Sliding the LZRW1 Search- and Look-Ahead Buffers.

The leftmost three characters of the look-ahead buffer are hashed into a 12-bit
number I, which is used to index an array of 2'2 = 4,096 pointers. A pointer P is
retrieved and is immediately replaced in the array by p_src. If P points outside the
search buffer, there is no match; the first character in the look-ahead buffer is output
as a literal, and p_src is advanced by 1. The same thing is done if P points inside the
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search buffer but to a string that does not match the one in the look-ahead buffer. If
P points to a match of at least three characters, the encoder finds the longest match
(at most 16 characters), outputs a match item, and advances p_src by the length of
the match. This process is depicted in Figure 3.15. An interesting point to note is that
the array of pointers does not have to be initialized when the encoder starts, since the
encoder checks every pointer. Initially, all pointers are random, but as they are replaced,
more and more of them point to real matches.

The output of the LZRW1 encoder (Figure 3.16) consists of groups, each starting
with a 16-bit control word, followed by 16 items. Each item is either an 8-bit literal
or a 16-bit copy item (a match) consisting of a 4-bit length field b (where the length is
b+1) and a 12-bit offset (the a and c fields). The length field indicates lengths between
3 and 16. The 16 bits of the control word flag each of the 16 items that follow (a 0
flag indicates a literal and a flag of 1 indicates a match item). Obviously, groups have
different lengths. The last group may contain fewer than 16 items.

The decoder is even simpler than the encoder, since it does not need the array
of pointers. It maintains a large buffer using a p_src pointer in the same way as the
encoder. The decoder reads a control word from the compressed stream and uses its
16 bits to read 16 items. A literal item is decoded by appending it to the buffer and
incrementing p_src by 1. A copy item is decoded by subtracting the offset from p_src,
fetching a string from the search buffer, of length indicated by the length field, and
appending it to the buffer. Then p_src is incremented by the length.

Table 3.14 illustrates the first seven steps of encoding “that thatch thaws”. The
values produced by the hash function are arbitrary. Initially, all pointers are random
(indicated by “any”) but they are replaced by useful ones very quickly.

o Exercise 3.8: Summarize the last steps in a table similar to Table 3.14 and write the
final compressed stream in binary.

Hash
p_src 3 chars index P Output Binary output
1 tha 4 any—1 t 01110100
2 hat 6 any—2 h 01101000
3 aty, 2 any—3 a 01100001
4 tut 1 any—4 t 01110100
5 uth 5 any—> U 00100000
6 tha 4 4—1 6,5 0000]0011]00000101
10 ch, 3 any—10 c 01100011

Table 3.14: First Seven Steps of Encoding that thatch thaws.

Tests done by the original developer indicate that LZRW1 performs about 10%
worse than LZC (the UNIX compress utility) but is four times faster. Also, it performs
about 4% worse than LZFG (the A1 method) but runs ten times faster. It is therefore
suited for cases where speed is more important than compression performance. A 68000
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random pointer-e———
4096 o] hash ]
. function
pointers
offset

B
| [ I | |

T already encoded search buffer (4096) look-ahead not encoded yet
buffer (16)

initial
p-sre p-src
— large buffer for one input block ——+—

Figure 3.15: The LZRW1 Encoder.

16-bit control word

i\ 16 items

| Compressed stream

One group

RN
]
PN

ASCII code a b C

Figure 3.16: Format of the Output.
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assembly language implementation has required, on average, the execution of only 13
machine instructions to compress, and four instructions to decompress, one byte.

Exercise 3.9: Show a practical situation where compression speed is more important
than compression ratio.

3.11 LZRW4

LZRW4 is a variant of LZ77, based on ideas of Ross Williams about possible ways to
combine a dictionary method with prediction (Section 3.31). LZRW4 also borrows some
ideas from LZRW1. It uses a 1 Mbyte buffer where both the search and look-ahead
buffers slide from left to right. At any point in the encoding process, the order-2 context
of the current symbol (the two most-recent symbols in the search buffer) is used to
predict the current symbol. The two symbols constituting the context are hashed to a
12-bit number I, which is used as an index to a 2'2 = 4,096-entry array A of partitions.
Each partition contains 32 pointers to the input data in the 1 Mbyte buffer (each pointer
is therefore 20 bits long).

The 32 pointers in partition A[I] are checked to find the longest match between
the look-ahead buffer and the input data seen so far. The longest match is selected and
is coded in 8 bits. The first 3 bits code the match length according to Table 3.17; the
remaining 5 bits identify the pointer in the partition. Such an 8-bit number is called a
copy item. If no match is found, a literal is encoded in 8 bits. For each item, an extra
bit is prepared, a 0 for a literal and a 1 for a copy item. The extra bits are accumulated
in groups of 16, and each group is output, as in LZRW1, preceding the 16 items it refers
to.

3 bits: 000 001 010 011 100 101 110 111
length: 2 3 4 ) 6 7 8 16

Table 3.17: Encoding the Length in LZRWA4.

The partitions are updated all the time by moving “good” pointers toward the start
of their partition. When a match is found, the encoder swaps the selected pointer with
the pointer halfway toward the partition (Figure 3.18a,b). If no match is found, the
entire 32-pointer partition is shifted to the left and the new pointer is entered on the
right, pointing to the current symbol (Figure 3.18¢).

The Red Queen shook her head, “You may call it ‘nonsense’ if you like,” she said, “but
I’ve heard nonsense, compared with which that would be as sensible as a dictionary!”

—Lewis Carroll, Through the Looking Glass (1872)
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partition (32 pointers)
| ] | | /] ]

partition (32 pointers)

-~
shift pointers new
Y pointer
\ \ |
search buffer look-ahead

()

Figure 3.18: Updating an LZRW4 Partition.

3.12 LZW

This is a popular variant of LZ78, developed by Terry Welch in 1984 ([Welch 84] and
[Phillips 92]). Its main feature is eliminating the second field of a token. An LZW token
consists of just a pointer to the dictionary. To best understand LZW, we will temporarily
forget that the dictionary is a tree, and will think of it as an array of variable-size strings.
The LZW method starts by initializing the dictionary to all the symbols in the alphabet.
In the common case of 8-bit symbols, the first 256 entries of the dictionary (entries 0
through 255) are occupied before any data is input. Because the dictionary is initialized,
the next input character will always be found in the dictionary. This is why an LZW
token can consist of just a pointer and does not have to contain a character code as in
LZ77 and LZ78.

(LZW has been patented and for many years its use required a license. This issue
is discussed in Section 3.30.)

The principle of LZW is that the encoder inputs symbols one by one and accu-
mulates them in a string I. After each symbol is input and is concatenated to I, the
dictionary is searched for string I. As long as I is found in the dictionary, the process
continues. At a certain point, adding the next symbol x causes the search to fail; string
I is in the dictionary but string Ix (symbol x concatenated to I) is not. At this point
the encoder (1) outputs the dictionary pointer that points to string I, (2) saves string
Ix (which is now called a phrase) in the next available dictionary entry, and (3) ini-
tializes string I to symbol x. To illustrate this process, we again use the text string
sir,sid eastman easily teases sea sick_ seals. The steps are as follows:

0. Initialize entries 0-255 of the dictionary to all 256 8-bit bytes.
1. The first symbol s is input and is found in the dictionary (in entry 115, since this is
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the ASCII code of s). The next symbol 1 is input, but si is not found in the dictionary.
The encoder performs the following: (1) outputs 115, (2) saves string si in the next
available dictionary entry (entry 256), and (3) initializes I to the symbol i.

2. The r of sir is input, but string ir is not in the dictionary. The encoder (1) outputs
105 (the ASCII code of i), (2) saves string ir in the next available dictionary entry
(entry 257), and (3) initializes I to the symbol r.

Table 3.19 summarizes all the steps of this process. Table 3.20 shows some of the
original 256 entries in the LZW dictionary plus the entries added during encoding of
the string above. The complete output stream is (only the numbers are output, not the
strings in parentheses) as follows:

115 (s), 105 (i), 114 (r), 32 (1), 256 (1), 100 (d), 32 (1), 101 (e), 97 (a), 115 (s), 116
(), 109 (m), 97 (a), 110 (n), 262 (Le), 264 (as), 105 (1), 108 (1), 121 (y),

32 (), 116 (t), 263 (ea), 115 (s), 101 (e), 115 (s), 259 (us), 263 (ea), 259 (Us), 105 (i),
99 (c), 107 (k), 280 (use), 97 (a), 108 (1), 115 (s), eof.

Figure 3.21 is a pseudo-code listing of the algorithm. We denote by A the empty
string, and by <<a,b>> the concatenation of strings a and b.

The line “append <<di,ch>> to the dictionary” is of special interest. It is clear
that in practice, the dictionary may fill up. This line should therefore include a test for
a full dictionary, and certain actions for the case where it is full.

Since the first 256 entries of the dictionary are occupied right from the start, pointers
to the dictionary have to be longer than 8 bits. A simple implementation would typically
use 16-bit pointers, which allow for a 64K-entry dictionary (where 64K = 216 = 65,536).
Such a dictionary will, of course, fill up very quickly in all but the smallest compression
jobs. The same problem exists with LZ78, and any solutions used with LZ78 can also
be used with LZW. Another interesting fact about LZW is that strings in the dictionary
become only one character longer at a time. It therefore takes a long time to end up with
long strings in the dictionary, and thus a chance to achieve really good compression. We
can say that LZW adapts slowly to its input data.

Exercise 3.10: Use LZW to encode the string “alf eats alfalfa”. Show the encoder
output and the new entries added by it to the dictionary.

Exercise 3.11: Analyze the LZW compression of the string “aaaa...”.

A dirty icon (anagram of “dictionary”) ‘

3.12.1 LZW Decoding

To understand how the LZW decoder works, we recall the three steps the encoder
performs each time it writes something on the output stream. They are (1) it outputs
the dictionary pointer that points to string I, (2) it saves string Ix in the next available
entry of the dictionary, and (3) it initializes string I to symbol x.

The decoder starts with the first entries of its dictionary initialized to all the symbols
of the alphabet (normally 256 symbols). It then reads its input stream (which consists
of pointers to the dictionary) and uses each pointer to retrieve uncompressed symbols
from its dictionary and write them on its output stream. It also builds its dictionary in
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in new in new
I dict? entry output I dict? entry output
s Y y Y
si N  256-si 115 (s) Yu N  274-y, 121 (y)
i Y L Y
ir N 257-r 105 (1) st N 275t 32 (1)
r Y t Y
T, N 258-1, 114 (x) te N 276-te 116 (t)
U Y e Y
LS N 259-.,s 32 (u) ea Y
s Y eas N  277-eas 263 (ea)
si Y s Y
sid N 260-sid 256 (si) se N  278-se 115 (s)
d Y e Y
d, N  261-d, 100 (q) es N  279-es 101 (e)
U Y s Y
Le N 262- e 32 (1) Sy N 280-s, 115 (s)
e Y U Y
ea N  263-ea 101 (e) uS Y
a Y Lse N 281-,se 259 (us)
as N  264-as 97 (a) e Y
s Y ea Y
st N  265-st 115 (s) eay N  282-ea, 263 (ea)
t Y U Y
tm N 266-tm 116 (t) LS Y
m Y usi N 283-s1 259 (us)
ma N 267-ma 109 (m) i Y
a Y ic N 9284ic 105 (i)
an N  268-an 97 (a) c Y
n Y ck N  285-ck 99 (c)
n, N 269-n,, 110 (n) k Y
U Y ky N 286-k,, 107 (k)
e Y U Y
Lea N 270-uea 262 (Le) LS Y
a Y Lse Y
as Y Lsea N 287-usea 281 (use)
asi N 27l-asi 264 (as) a Y
i Y al N  288-al 97 (a)
i1 N 27241 105 (1) 1 %
1Y 1s N 2891s 108 (1)
ly N 2731y 108 (1) S Y
s,eof N 115 (s)

Table 3.19: Encoding sir sid eastman easily teases sea sick seals.

201
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0 NULL 110 n 262 e 276  te
1 SOH ... 263 ea 277 eas
- 115 s 264 as 278 se
32 SP 116 t 265 st 279 es
. . 266 tm 280 s,
97 a 121 y 267 ma 281 _se
98 b . 268 an 282 eay
99 c 255 255 269 n, 283 Usi
100 d 256 si 270 _ea 284 ic
101 e 257 ir 271 asi 285 ck
. 258 r 272 il 286 ki
107 k 259 s 273 1y 287 _sea
108 1 260 sid 274 yu 288 al
109 m 261 d 275 _t 289 1s

Table 3.20: An LZW Dictionary.

for i:=0 to 255 do
append i as a 1-symbol string to the dictionary;
append A to the dictionary;
di:=dictionary index of A;
repeat
read(ch);
if <<di,ch>> is in the dictionary then
di:=dictionary index of <<di,ch>>;
else
output (di) ;
append <<di,ch>> to the dictionary;
di:=dictionary index of ch;
endif;
until end-of-input;

Figure 3.21: The LZW Algorithm.
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the same way as the encoder (this fact is usually expressed by saying that the encoder
and decoder are synchronized, or that they work in lockstep).

In the first decoding step, the decoder inputs the first pointer and uses it to retrieve
a dictionary item I. This is a string of symbols, and it is written on the decoder’s output.
String Ix needs to be saved in the dictionary, but symbol x is still unknown; it will be
the first symbol in the next string retrieved from the dictionary.

In each decoding step after the first, the decoder inputs the next pointer, retrieves
the next string J from the dictionary, writes it on the output, isolates its first symbol x,
and saves string Ix in the next available dictionary entry (after checking to make sure
string Ix is not already in the dictionary). The decoder then moves J to I and is ready
for the next step.

In our “sir;sid...” example, the first pointer that’s input by the decoder is 115.
This corresponds to the string s, which is retrieved from the dictionary, gets stored in
I, and becomes the first item written on the decoder’s output. The next pointer is 105,
so string i is retrieved into J and is also written on the output. J’s first symbol is
concatenated with I, to form string si, which does not exist in the dictionary, and is
therefore added to it as entry 256. Variable J is moved to I, so I is now the string i.
The next pointer is 114, so string r is retrieved from the dictionary into J and is also
written on the output. J’s first symbol is concatenated with I, to form string ir, which
does not exist in the dictionary, and is added to it as entry 257. Variable J is moved to
I, so I is now the string r. The next step reads pointer 32, writes ., on the output, and
saves string r,.

”

Exercise 3.12: Decode the string alf ieats alfalfa by using the encoding results
from Exercise 3.10.

Exercise 3.13: Assume a two-symbol alphabet with the symbols a and b. Show the
first few steps for encoding and decoding the string “ababab...”.

3.12.2 LZW Dictionary Structure

Up until now, we have assumed that the LZW dictionary is an array of variable-size
strings. To understand why a trie is a better data structure for the dictionary we
need to recall how the encoder works. It inputs symbols and concatenates them into a
variable I as long as the string in I is found in the dictionary. At a certain point the
encoder inputs the first symbol x, which causes the search to fail (string Ix is not in
the dictionary). It then adds Ix to the dictionary. This means that each string added
to the dictionary effectively adds just one new symbol, x. (Phrased another way; for
each dictionary string of more than one symbol, there exists a “parent” string in the
dictionary that’s one symbol shorter.)

A tree similar to the one used by LZ78 is therefore a good data structure, because
adding string Ix to such a tree is done by adding one node with x. The main problem
is that each node in the LZW tree may have many children (this is a multiway tree, not
a binary tree). Imagine the node for the letter a in entry 97. Initially it has no children,
but if the string ab is added to the tree, node 97 gets one child. Later, when, say, the
string ae is added, node 97 gets a second child, and so on. The data structure for the
tree should therefore be designed such that a node could have any number of children,
but without having to reserve any memory for them in advance.
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One way of designing such a data structure is to house the tree in an array of nodes,
each a structure with two fields: a symbol and a pointer to the parent node. A node
has no pointers to any child nodes. Moving down the tree, from a node to one of its
children, is done by a hashing process in which the pointer to the node and the symbol
of the child are hashed to create a new pointer.

Suppose that string abc has already been input, symbol by symbol, and has been
stored in the tree in the three nodes at locations 97, 266, and 284. Following that, the
encoder has just input the next symbol d. The encoder now searches for string abced, or,
more specifically, for a node containing the symbol d whose parent is at location 284.
The encoder hashes the 284 (the pointer to string abc) and the 100 (ASCII code of d)
to create a pointer to some node, say, 299. The encoder then examines node 299. There
are three possibilities:

1. The node is unused. This means that abcd is not yet in the dictionary and should

be added to it. The encoder adds it to the tree by storing the parent pointer 284 and
ASCII code 100 in the node. The result is the following;:

Node
Address 97 266 284 299
Contents : (-:a) (97:b) (266:c) (284:d)
Represents: a ab abc abcd

2. The node contains a parent pointer of 284 and the ASCII code of d. This means
that string abcd is already in the tree. The encoder inputs the next symbol, say e, and
searches the dictionary tree for string abcde.

3. The node contains something else. This means that another hashing of a pointer
and an ASCII code has resulted in 299, and node 299 already contains information from
another string. This is called a collision, and it can be dealt with in several ways. The
simplest way to deal with a collision is to increment pointer 299 and examine nodes 300,
301,... until an unused node is found, or until a node with (284:d) is found.

In practice, we build nodes that are structures with three fields, a pointer to the
parent node, the pointer (or index) created by the hashing process, and the code (nor-
mally ASCII) of the symbol contained in the node. The second field is necessary because
of collisions. A node can therefore be illustrated by
parent
index
symbol

We illustrate this data structure using string ababab... of Exercise 3.13. The
dictionary is an array dict where each entry is a structure with the three fields parent,
index, and symbol. We refer to a field by, for example, dict [pointer] .parent, where
pointer is an index to the array. The dictionary is initialized to the two entries a and
b. (To keep the example simple we use no ASCII codes. We assume that a has code 1
and b has code 2.) The first few steps of the encoder are as follows:

Step 0: Mark all dictionary locations from 3 on as unused.

AL
[al (o] (1
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Step 1. The first symbol a is input into variable I. What is actually input is the code
of a, which in our example is 1, so I = 1. Since this is the first symbol, the encoder
assumes that it is in the dictionary and so does not perform any search.

Step 2: The second symbol b is input into J, so J = 2. The encoder has to search
for string ab in the dictionary. It executes pointer:=hash(I,J). Let’s assume that
the result is 5. Field dict[pointer].index contains “unused”, since location 5 is still
empty, so string ab is not in the dictionary. It is added by executing

dict[pointer] .parent:=I;
dict[pointer].index:=pointer;
dict[pointer].symbol:=J;

with pointer=>5. J is moved into I, so I = 2.

/A
2] [-][-]5]. .
[al (o] (1 o]

Step 3: The third symbol a is input into J, so J = 1. The encoder has to search for string
ba in the dictionary. It executes pointer:=hash(I,J). Let’s assume that the result is
8. Field dict[pointer].index contains “unused”, so string ba is not in the dictionary.
It is added as before by executing

dict[pointer] .parent:=I;
dict[pointer].index:=pointer;
dict[pointer].symbol:=J;

with pointer=8. J is moved into I, so I =1.

AL 2] /]
1) 2] [ [BI - -] [8]]-] .-
L2 (o] (1 (el 2l

Step 4: The fourth symbol b is input into J, so J=2. The encoder has to search for
string ab in the dictionary. It executes pointer:=hash(I,J). We know from step 2 that
the result is 5. Field dict [pointer] .index contains 5, so string ab is in the dictionary.
The value of pointer is moved into I, so I = 5.

Step 5: The fifth symbol a is input into J, so J = 1. The encoder has to search for string
aba in the dictionary. It executes as usual pointer:=hash(I,J). Let’s assume that the
result is 8 (a collision). Field dict [pointer].index contains 8, which looks good, but
field dict [pointer] .parent contains 2 instead of the expected 5, so the hash function
knows that this is a collision and string aba is not in dictionary entry 8. It increments
pointer as many times as necessary until it finds a dictionary entry with index=8 and
parent=>5 or until it finds an unused entry. In the former case, string aba is in the
dictionary, and pointer is moved to I. In the latter case aba is not in the dictionary,
and the encoder saves it in the entry pointed at by pointer, and moves J to I.

AL /[2]13]17
1) 2] [] =] [B] [-] =] [8][8]]-]- -
2] o] (] o) [ (2l fa] [

Example: The 15 hashing steps for encoding the string alf eats alfalfa are
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shown below. The encoding process itself is illustrated in detail in the answer to Ex-
ercise 3.10. The results of the hashing are arbitrary; they are not the results produced
by a real hash function. The 12 trie nodes constructed for this string are shown in
Figure 3.22.

. Hash(1,97) — 278. Array location 278 is set to (97,278,1).

. Hash(£,108) — 266. Array location 266 is set to (108,266, f).

. Hash(,,,102) — 269. Array location 269 is set to (102,269,.,).

. Hash(e,32) — 267. Array location 267 is set to (32,267, e).

. Hash(a,101) — 265. Array location 265 is set to (101, 265, a).

. Hash(t,97) — 272. Array location 272 is set to (97,272, t).

. Hash(s,116) — 265. A collision! Skip to the next available location, 268, and set it
o (116,265, s). This is why the index needs to be stored.

8. Hash(y,115) — 270. Array location 270 is set to (115,270, ).

9. Hash(a,32) — 268. A collision! Skip to the next available location, 271, and set it to
(32,268, a).

10. Hash(1,97) — 278. Array location 278 already contains index 278 and symbol 1
from step 1, so there is no need to store anything else or to add a new trie entry.

11. Hash(£,278) — 276. Array location 276 is set to (278,276, f).

12. Hash(a,102) — 274. Array location 274 is set to (102,274, a).

13. Hash(1,97) — 278. Array location 278 already contains index 278 and symbol 1
from step 1, so there is no need to do anything.

14. Hash(£,278) — 276. Array location 276 already contains index 276 and symbol £
from step 11, so there is no need to do anything.

15. Hash(a,276) — 274. A collision! Skip to the next available location, 275, and set it
0 (276,274, a).

Readers who have carefully followed the discussion up to this point will be happy to
learn that the LZW decoder’s use of the dictionary tree-array is simple and no hashing is
needed. The decoder starts, like the encoder, by initializing the first 256 array locations.
It then reads pointers from its input stream and uses each to locate a symbol in the
dictionary.

In the first decoding step, the decoder inputs the first pointer and uses it to retrieve
a dictionary item I. This is a symbol that is now written by the decoder on its output
stream. String Ix needs to be saved in the dictionary, but symbol x is still unknown; it
will be the first symbol in the next string retrieved from the dictionary.

OO W N

In each decoding step after the first, the decoder inputs the next pointer and uses
it to retrieve the next string J from the dictionary and write it on the output stream. If
the pointer is, say 8, the decoder examines field dict[8] .index. If this field equals 8,
then this is the right node. Otherwise, the decoder examines consecutive array locations
until it finds the right one.

Once the right tree node is found, the parent field is used to go back up the tree
and retrieve the individual symbols of the string in reverse order. The symbols are then
placed in J in the right order (see below), the decoder isolates the first symbol x of J, and
saves string Ix in the next available array location. (String I was found in the previous
step, so only one node, with symbol x, needs be added.) The decoder then moves J to
I and is ready for the next step.
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Retrieving a complete string from the LZW tree therefore involves following the
pointers in the parent fields. This is equivalent to moving up the tree, which is why the
hash function is no longer needed.

Example: The previous example describes the 15 hashing steps in the encoding
of string alf eats alfalfa. The last step sets array location 275 to (276,274,a) and
writes 275 (a pointer to location 275) on the compressed stream. When this stream is
read by the decoder, pointer 275 is the last item input and processed by the decoder.
The decoder finds symbol a in the symbol field of location 275 (indicating that the string
stored at 275 ends with an a) and a pointer to location 276 in the parent field. The
decoder then examines location 276 where it finds symbol £ and parent pointer 278. In
location 278 the decoder finds symbol 1 and a pointer to 97. Finally, in location 97
the decoder finds symbol a and a null pointer. The (reversed) string is therefore afla.
There is no need for the decoder to do any hashing or to use the index fields.

The last point to discuss is string reversal. Two commonly-used approaches are
outlined here:

1. Use a stack. A stack is a common data structure in modern computers. It is an array
in memory that is accessed at one end only. At any time, the item that was last pushed
into the stack will be the first one to be popped out (last-in-first-out, or LIFO). Symbols
retrieved from the dictionary are pushed into the stack. When the last one has been
retrieved and pushed, the stack is popped, symbol by symbol, into variable J. When the
stack is empty, the entire string has been reversed. This is a common way to reverse a
string.

2. Retrieve symbols from the dictionary and concatenate them into J from right to left.
When done, the string will be stored in J in the right order. Variable J must be long
enough to accommodate the longest possible string, but then it has to be long enough
even when a stack is used.

Exercise 3.14: What is the longest string that can be retrieved from the LZW dictio-
nary during decoding?

(A reminder. The troublesome issue of software patents and licenses is discussed in
Section 3.30.)

3.12.3 LZW in Practice

The publication of the LZW algorithm, in 1984, has strongly affected the data compres-
sion community and has influenced many people to come up with implementations and
variants of this method. Some of the most important LZW variants and spin-offs are
described here.

3.12.4 Differencing

The idea of differencing, or relative encoding, has already been mentioned in Sec-
tion 1.3.1. This idea turns out to be useful in LZW image compression, since most
adjacent pixels don’t differ by much. It is possible to implement an LZW encoder that
computes the value of a pixel relative to its predecessor and then encodes this difference.
The decoder should, of course, be compatible and should compute the absolute value of
a pixel after decoding its relative value.



3.13 LZMW 209

3.12.5 LZW Variants

A word-based LZW variant is described in Section 8.6.2.

LZW is an adaptive data compression method, but it is slow to adapt to its input,
since strings in the dictionary become only one character longer at a time. Exercise 3.11
shows that a string of one million a’s (which, of course, is highly redundant) produces
dictionary phrases, the longest of which contains only 1,414 a’s.

The LZMW method, Section 3.13, is a variant of LZW that overcomes this problem.
Its main principle is this: Instead of adding I plus one character of the next phrase to
the dictionary, add I plus the entire next phrase to the dictionary.

The LZAP method, Section 3.14, is yet another variant based on this idea: Instead
of just concatenating the last two phrases and placing the result in the dictionary, place
all prefixes of the concatenation in the dictionary. More specifically, if S and T are the
last two matches, add St to the dictionary for every nonempty prefix t of T, including
T itself.

Table 3.23 summarizes the principles of LZW, LZMW, and LZAP and shows how
they naturally suggest another variant, LZY.

Increment Add a string to the dictionary
string by per phrase  per input char.
One character: LZW LZY
Several chars: LZMW LZAP

Table 3.23: LZW and Three Variants.

LZW adds one dictionary string per phrase and increments strings by one symbol at
a time. LZMW adds one dictionary string per phrase and increments strings by several
symbols at a time. LZAP adds one dictionary string per input symbol and increments
strings by several symbols at a time. LZY, Section 3.15, fits the fourth cell of Table 3.23.
It is a method that adds one dictionary string per input symbol and increments strings
by one symbol at a time.

3.13 LZMW

This LZW variant, developed by V. Miller and M. Wegman [Miller and Wegman 85], is
based on two principles:

1. When the dictionary becomes full, the least-recently-used dictionary phrase is deleted.
There are several ways to select this phrase, and the developers suggest that any rea-
sonable way of doing so would work. One possibility is to identify all the dictionary
phrases S for which there are no phrases Sa (nothing has been appended to S, implying
that S hasn’t been used since it was placed in the dictionary) and delete the oldest of
them. An auxiliary data structure has to be constructed and maintained in this case,
pointing to dictionary phrases according to their age (the first pointer always points to
the oldest phrase). The first 256 dictionary phrases should never be deleted.
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2. Each phrase added to the dictionary is a concatenation of two strings, the previous
match (S’ below) and the current one (8). This is in contrast to LZW, where each phrase
added is the concatenation of the current match and the first symbol of the next match.
The pseudo-code algorithm illustrates this:

Initialize Dict to all the symbols of alphabet A;
i:=1;

S’ :=null;
while i <= input size

k:=longest match of Input[i] to Dict;

Output (k) ;

S:=Phrase k of Dict;

i:=i+length(8);

If phrase S’S is not in Dict, append it to Dict;

7 :=S;
endwhile;

By adding the concatenation S’S to the LZMW dictionary, dictionary phrases can
grow by more than one symbol at a time. This means that LZMW dictionary phrases
are more “natural” units of the input (for example, if the input is text in a natural
language, dictionary phrases will tend to be complete words or even several words in
that language). This, in turn, implies that the LZMW dictionary generally adapts to
the input faster than the LZW dictionary.

Table 3.24 illustrates the LZMW method by applying it to the string

sir_sid eastman easily teases sea sick seals.
LZMW adapts to its input faster than LZW but has the following three disadvan-
tages:

1. The dictionary data structure cannot be the simple LZW trie, because not every
prefix of a dictionary phrase is included in the dictionary. This means that the one-
symbol-at-a-time search method used in LZW will not work. Instead, when a phrase S
is added to the LZMW dictionary, every prefix of S must be added to the data structure,
and every node in the data structure must have a tag indicating whether the node is in
the dictionary or not.

2. Finding the longest string may require backtracking. If the dictionary contains aaaa
and aaaaaaaa, we have to reach the eighth symbol of phrase aaaaaaab to realize that
we have to choose the shorter phrase. This implies that dictionary searches in LZMW
are slower than in LZW. This problem does not apply to the LZMW decoder.

3. A phrase may be added to the dictionary twice. This again complicates the choice of
data structure for the dictionary.

¢ Exercise 3.15: Use the LZMW method to compress the string swiss miss.

o Exercise 3.16: Compress the string yabbadabbadabbadoo using LZMW.
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Out- Add to
Step Input put S dict. s’
sir,sid eastman easily teases_ sea sick seals

1 s 115 s — —
2 i 105 i 256-si s
3 r 114 r 257-ir i
4 - 32 4 258-r, T
5 si 256 si 259-si
6 d 100 d 260-sid si
7 - 32 . 261-d, d
8 e 101 e 262-,e
9 a 97 a 263-ea e
10 s 115 s 264-as a
11 t 117 t 265-st s
12 m 109 m 266-tm  t
13 a 97 a 267-ma m
14 n 110 n 268-an a
15 -e 262 e 269-n,e n
16 as 264 as 270-peas _e
17 i 105 i 271-asi as
18 1 108 1 272-i1 i
19 y 121 y 273-1y 1
20 - 32 4 274-yy vy
21 t 117 ¢ 275-0t
22 ea 263 ea 276-tea t
23 s 115 s 277-eas ea
24 e 101 e 278-se s
25 s 115 s 279-es e
26 - 32 280-s, s
27 se 278 se 281-se
28 a 97 a 282-sea se
29 -si 259 _si 283-a,si a
30 c 99 ¢ 284- ,sic si
31 k 107 k 285-ck ¢
32 -se 281 _se 286-kyse k
33 a 97 a 287-,sea se
34 1 108 1 288-al a
35 s 115 s 289-1s 1

Table 3.24: LZMW Example.
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3.14 LZAP

LZAP is an extension of LZMW. The “AP” stands for “All Prefixes” [Storer 88]. LZAP
adapts to its input fast, like LZMW, but eliminates the need for backtracking, a feature
that makes it faster than LZMW. The principle is this: Instead of adding the concate-
nation S’S of the last two phrases to the dictionary, add all the strings S’t where t is
a prefix of S (including S itself). Thus if 8’ = a and S = bed, add phrases ab,abc, and
abcd to the LZAP dictionary. Table 3.25 shows the matches and the phrases added to
the dictionary for yabbadabbadabbadoo.

Step Input Match Add to dictionary
yabbadabbadabbadoo
Ly y
2 a a 256-ya
3 b b 257-ab
4 b b 258-bb
5 a a 259-ba
6 d d 260-ad
7 ab ab 261-da, 262-dab
8 ba ba 263-abb, 264-abba
9 dab dab 265-bad, 266-bada, 267-badab
10 ba ba 268-dabb, 269-dabba
11 d d 270-bad
12 o o 271-do
13 o 272-00

Table 3.25: LZAP Example.

In step 7 the encoder concatenates d to the two prefixes of ab and adds the two
phrases da and dab to the dictionary. In step 9 it concatenates ba to the three prefixes
of dab and adds the resulting three phrases bad, bada, and badab to the dictionary.

LZAP adds more phrases to its dictionary than does LZMW, so it takes more
bits to represent the position of a phrase. At the same time, LZAP provides a bigger
selection of dictionary phrases as matches for the input string, so it ends up compressing
slightly better than LZMW while being faster (because of the simpler dictionary data
structure, which eliminates the need for backtracking). This kind of trade-off is common
in computer algorithms.

“Heavens, Andrew!” said his wife; “what is a rustler?”

It was not in any dictionary, and current translations of it were inconsistent. A man at
Hoosic Falls said that he had passed through Cheyenne, and heard the term applied
in a complimentary way to people who were alive and pushing. Another man had
always supposed it meant some kind of horse. But the most alarming version of all
was that a rustler was a cattle thief.

—Owen Wister, The Virginian—A Horseman of the Plains
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3.15 LZY

The LZY method is due to Dan Bernstein. The Y stands for Yabba, which came from
the input string originally used to test the algorithm. The LZY dictionary is initialized
to all the single symbols of the alphabet. For every symbol C in the input stream, the
decoder looks for the longest string P that precedes C and is already included in the
dictionary. If the string PC is not in the dictionary, it is added to it as a new phrase.

As an example, the input yabbadabbadabbadoo causes the phrases ya, ab, bb, ba,
ad, da, abb, bba, ada, dab, abba, bbad, bado, ado, and oo to be added to the dictionary.

While encoding the input, the encoder keeps track of the list of matches-so-far
L. Initially, L is empty. If C is the current input symbol, the encoder (before adding
anything to the dictionary) checks, for every string M in L, whether string MC is in the
dictionary. If it is, then MC becomes a new match-so-far and is added to L. Otherwise,
the encoder outputs the number of L (its position in the dictionary) and adds C, as a
new match-so-far, to L.

Here is a pseudo-code algorithm for constructing the LZY dictionary. The author’s
personal experience suggests that implementing such an algorithm in a real programming
language results in a deeper understanding of its operation.

Start with a dictionary containing all the symbols of the
alphabet, each mapped to a unique integer.
M:=empty string.
Repeat
Append the next symbol C of the input stream to M.
If M is not in the dictionary, add it to the dictiomary,
delete the first character of M, and repeat this step.
Until end-of-input.

The output of LZY is not synchronized with the dictionary additions. Also, the
encoder must be careful not to have the longest output match overlap itself. Because of
this, the dictionary should consist of two parts, S and T, where only the former is used
for the output. The algorithm is the following:

Start with S mapping each single character to a unique integer;
set T empty; M empty; and 0 empty.
Repeat

Input the next symbol C. If 0OC is in S, set 0:=0C;

otherwise output S(0), set 0:=C, add T to S,

and remove everything from T.

While MC is not in S or T, add MC to T (mapping to the next
available integer), and chop off the first character of M.
After M is short enough so that MC is in the dict., set M:=MC.

Until end-of-input.
Output S(0) and quit.

The decoder reads the compressed stream. It uses each code to find a phrase in the
dictionary, it outputs the phrase as a string, then uses each symbol of the string to add
a new phrase to the dictionary in the same way the encoder does. Here are the decoding
steps:
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Start with a dictionary containing all the symbols of the
alphabet, each mapped to a unique integer.

M:=empty string.

Repeat

Read D(0) from the input and take the inverse under D to find O.
As long as 0 is not the empty string, find the first character C

of 0, and update (D,M) as above.

Also output C and chop it off from the front of O.

Until end-of-input.

Notice that encoding requires two fast operations on strings in the dictionary: (1)
testing whether string SC is in the dictionary if S’s position is known and (2) finding S’s
position given CS’s position. Decoding requires the same operations plus fast searching
to find the first character of a string when its position in the dictionary is given.

Table 3.26 illustrates LZY for the input string abcabcabcabcabcabcabex’. It shows
the phrases added to the dictionary at each step, as well as the list of current matches.

The encoder starts with no matches. When it inputs a symbol, it appends it to each
match-so-far; any results that are already in the dictionary become the new matches-so-
far (the symbol itself becomes another match). Any results that are not in the dictionary
are deleted from the list and added to the dictionary.

Before reading the fifth c, for example, the matches-so-far are bcab, cab, ab, and
b. The encoder appends c to each match. bcabc doesn’t match, so the encoder adds it
to the dictionary. The rest are still in the dictionary, so the new list of matches-so-far
is cabc, abc, bc, and c.

When the x is input, the current list of matches-so-far is abcabc, bcabc, cabce, abc,
bc, and c. None of abcabcex, becabex, cabex, abex, bex, or cx are in the dictionary, so
they are all added to it, and the list of matches-so-far is reduced to just a single x.

Airman stops coed

Anagram of “data compression”

3.16 LZP

LZP is an LZ77 variant developed by Charles Bloom [Bloom 96] (the P stands for
“prediction”). It is based on the principle of context prediction, which says, “if a certain
string abcde has appeared in the input stream in the past and was followed by fg.. .,
then when abcde appears again in the input stream, there is a good chance that it
will be followed by the same fg....” Section 3.31 should be consulted for the relation
between dictionary-based and prediction algorithms.

Figure 3.27 (part I) shows an LZ77 sliding buffer with fgh. . . as the current symbols
(this string is denoted by S) in the look-ahead buffer, immediately preceded by abcde in
the search buffer. The string abcde is called the contezt of £gh. .. and is denoted by C.
In general, the context of a string S is the N-symbol string C immediately to the left of
S. A context can be of any length N, and variants of LZP, discussed in Sections 3.16.3
and 3.16.4, use different values of N. The algorithm passes the context through a hash
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Step Input Add to dict. Current matches
abcabcabcabcabcabcabcex
1 a — a
2 b 256-ab b
3 c 257-be c
4 a 258-ca a
5 b — ab, b
6 C 259-abc bc, ¢
7 a 260-bca ca, a
8 b 261-cab ab, b
9 c — abc, be, ¢
10 a 262-abca bca, ca, a
11 b 263-bcab cab, ab, b
12 c 264-cabc abc, bc, ¢
13 a — abca, bca, ca, a
14 b 265-abcab bcab, cab, ab, b
15 c 266-bcabc cabc, abc, bc, ¢
16 a 267-cabca abca, bca, ca, a
17 b — abcab, bcab, cab, ab, b
18 c 268-abcabc bcabc, cabc, abc, bc, ¢
19 a 269-bcabca cabca, abca, bca, ca, a
20 b 270-cabcab abcab, bcab, cab, ab, b
21 c — abcabc, bcabc, cabce, abc, bc, ¢
22 x 27l-abcabcx x
23 272-bcabcex
24 273-cabcx
25 274-abcx
26 275-bcx
27 276-cx

Table 3.26: LZY Example.

Index Table

— H
P Hash Function
Search Buffer i Look-Ahead Buffer
...abcdefgi. .. ...abcdefgh. ..

Figure 3.27: The Principle of LZP: Part I.

function and uses the result H as an index to a table of pointers called the indez table.
The index table contains pointers to various symbols in the search buffer. Index H is
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used to select a pointer P. In a typical case, P points to a previously seen string whose
context is also abcde (see below for atypical cases). The algorithm then performs the
following steps:

Step 1: Tt saves P and replaces it in the index table with a fresh pointer Q pointing to
fgh... in the look-ahead buffer (Figure 3.27 Part II). An integer variable L is set to
zero. It is used later to indicate the match length.

Index Table '

P

Search Buffer ' Look-Ahead Buffer

.. .abcdefgi. .. ...abcdefgh. ..

Figure 3.27: The Principle of LZP: Part Il

Step 2: If P is not a null pointer, the algorithm follows it and compares the string pointed
at by P (string fgi... in the search buffer) to the string “fgh...” in the look-ahead
buffer. Only two symbols match in our example, so the match length, L, is set to 2.
Step 3 If L = 0 (no symbols have been matched), the buffer is slid to the right (or,
equivalently, the input is shifted to the left) one position and the first symbol of string
S (the £) is written on the compressed stream as a raw ASCII code (a literal).
Step 4: If L > 0 (L symbols have been matched), the buffer is slid to the right L positions
and the value of L is written on the compressed stream (after being suitably encoded).

In our example the single encoded value L = 2 is written on the compressed stream
instead of the two symbols fg, and it is this step that produces compression. Clearly, the
larger the value of L, the better the compression. Large values of L result when an N-
symbol context C in the input stream is followed by the same long string S as a previous
occurrence of C. This may happen when the input stream features high redundancy. In
a random input stream each occurrence of the same context C is likely to be followed
by another S, leading to L = 0 and therefore to no compression. An “average” input
stream results in more literals than L values being written on the output stream (see
also Exercise 3.18).

The decoder inputs the compressed stream item by item and creates the decom-
pressed output in a buffer B. The steps are:

Step 1: Input the next item I from the compressed stream.

Step 2: If T is a raw ASCII code (a literal), it is appended to buffer B, and the data in
B is shifted to the left one position.

Step & If T is an encoded match length, it is decoded, to obtain L. The present context
C (the rightmost N symbols in B) is hashed to an index H, which is used to select a
pointer P from the index table. The decoder copies the string of L symbols starting
at B[P] and appends it to the right end of B. It also shifts the data in B to the left L
positions and replaces P in the index table with a fresh pointer, to keep in lockstep with
the encoder.
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Two points remain to be discussed before we are ready to look at a detailed example.

1. When the encoder starts, it places the first N symbols of the input stream in the
search buffer, to become the first context. It then writes these symbols, as literals, on
the compressed stream. This is the only special step needed to start the compression.
The decoder starts by reading the first N items off the compressed stream (they should
be literals), and placing them at the rightmost end of buffer B, to serve as the first
context.

2. It has been mentioned before that in the typical case, P points to a previously-seen
string whose context is identical to the present context C. In an atypical case, P may
be pointing to a string whose context is different. The algorithm, however, does not
check the context and always behaves in the same way. It simply tries to match as many
symbols as possible. At worst, zero symbols will match, leading to one literal written
on the compressed stream.

3.16.1 Example

The input stream xyabcabcabxy is used to illustrate the operation of the LZP encoder.
To simplify the example, we use N = 2.

0 1 -+ 7 0 1 7
H | Xﬂabcabcabxy |

[ (b)

| Xylabcabcabxy |
LI LTI T T]
01
H (©) 0 1
[(TTTTTTT] @
| Xyatbcabcabxy | | xya|bcabcabxy |

Figure 3.28: LZP Compression of xyabcabcabxy: Part I.

1. To start the operation, the encoder shifts the first two symbols xy to the search buffer
and outputs them as literals. It also initializes all locations of the index table to the null
pointer.

2. The current symbol is a (the first a), and the context is xy. It is hashed to, say,
5, but location 5 of the index table contains a null pointer, so P is null (Figure 3.28a).
Location 5 is set to point to the first a (Figure 3.28b), which is then output as a literal.
The data in the encoder’s buffer is shifted to the left.

3. The current symbol is the first b, and the context is ya. It is hashed to, say, 7, but
location 7 of the index table contains a null pointer, so P is null (Figure 3.28c). Location
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7 is set to point to the first b (Figure 3.28d), which is then output as a literal. The data
in the encoder’s buffer is shifted to the left.

4. The current symbol is the first ¢, and the context is ab. It is hashed to, say, 2, but
location 2 of the index table contains a null pointer, so P is null (Figure 3.28¢). Location
2 is set to point to the first ¢ (Figure 3.28f), which is then output as a literal. The data
in the encoder’s buffer is shifted to the left.

5. The same happens two more times, writing the literals a and b on the compressed
stream. The current symbol is now (the second) c, and the context is ab. This context
is hashed, as in step 4, to 2, so P points to “cabc...”. Location 2 is set to point to
the current symbol (Figure 3.28g), and the encoder tries to match strings cabcabxy and
cabxy. The resulting match length is L = 3. The number 3 is written, encoded on the
output, and the data is shifted three positions to the left.

6. The current symbol is the second x, and the context is ab. It is hashed to 2, but
location 2 of the index table points to the second ¢ (Figure 3.28h). Location 2 is set to
point to the current symbol, and the encoder tries to match strings cabxy and xy. The
resulting match length is, of course, L = 0, so the encoder writes x on the compressed
stream as a literal and shifts the data one position.

7. The current symbol is the second y, and the context is bx. It is hashed to, say, 7. This
is a hash collision, since context ya was hashed to 7 in step 3, but the algorithm does
not check for collisions. It continues as usual. Location 7 of the index table points to the
first b (or rather to the string bcabcabxy). It is set to point to the current symbol, and
the encoder tries to match strings bcabcabxy and y, resulting in L = 0. The encoder
writes y on the compressed stream as a literal and shifts the data one position.

8. The current symbol is the end-of-data, so the algorithm terminates.

(f) 0 1
01 |H | Xyab|cabcabxy |
Hash ab (e)
| xyablcabcabxy | HENEEEEN
H
L TETT W | [
old P new P (8)
| Xyabcab|cabxy | | xyabcabc;ablxy

Figure 3.28 (Continued). LZP Compression of xyabcabcabxy: Part Il.

o Exercise 3.17: Write the LZP encoding steps for the input string xyaaaa. ...

Structures are the weapons of the mathematician.
—Nicholas Bourbaki
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3.16.2 Practical Considerations

Shifting the data in the buffer would require updating all the pointers in the index table.
An efficient implementation should therefore adopt a better solution. Two approaches
are described below, but other ones may also work.

1. Reserve a buffer as large as possible, and compress the input stream in blocks. Each
block is input into the buffer and is never shifted. Instead, a pointer is moved from left
to right, to point at any time to the current symbol in the buffer. When the entire buffer
has been encoded, the buffer is filled up again with fresh input. This approach simplifies
the program but has the disadvantage that the data at the end of a block cannot be
used to predict anything for the next block. Each block is encoded independently of the
other ones, leading to poorer compression.

2. Reserve a large buffer, and use it as a circular queue (Section 3.3.1). The data itself
does not have to be shifted, but after encoding the current symbol the data is effectively
shifted by updating the start and end pointers, and a new symbol is input and stored
in the buffer. The algorithm is somewhat more complicated, but this approach has the
advantage that the entire input is encoded as one stream. Every symbol benefits from
the D symbols preceding it (where D is the total length of the buffer).

Imagine a pointer P in the index table pointing to some symbol X in the buffer.
When the movement of the two pointers in the circular queue leaves X outside the
queue, some new symbol Y will be input into the position occupied by X, and P will now
be pointing to Y. When P is next selected by the hashing function and is used to match
strings, the match will likely result in L = 0. However, the algorithm always replaces
the pointer that it uses, so such a case should not degrade the algorithm’s performance
significantly.

3.16.3 LZP1 and LZP2

There are currently four versions of LZP, called LZP1 through LZP4. This section
discusses the details of the first two. The context used by LZP1 is of order 3, i.e., it is
the three bytes preceding the current one. The hash function produces a 12-bit index H
and is best described by the following C code:

H=((C>>11) ~C) &OxFFF.

Since H is 12 bits, the index table should be 2'2 = 4,096 entries long. Each entry is two
bytes (16 bits), but only 14 of the 16 bits are used. A pointer P selected in the index
table thus points to a buffer of size 24 = 16K.

The LZP1 encoder creates a compressed stream with literals and L values mixed
together. Each item must therefore be preceded by a flag indicating its nature. Since
only two flags are needed, the simplest choice would be 1-bit flags. However, we have
already mentioned that an “average” input stream results in more literals than L values,
so it makes sense to assign a short flag (less than one bit) to indicate a literal, and a
long flag (a wee bit longer than one bit) to indicate a length. The scheme used by LZP1
uses 1 to indicate two literals, 01 to indicate a literal followed by a match length, and
00 to indicate a match length.

Exercise 3.18: Let T indicate the probability of a literal in the compressed stream.
For what value of T does the above scheme produce flags that are 1-bit long on average?
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A literal is written on the compressed stream as an 8-bit ASCII code. Match lengths
are encoded according to Table 3.29. Initially, the codes are 2 bits. When these are all
used up, 3 bits are added, for a total of 5 bits, where the first 2 bits are 1’s. When
these are also all used, 5 bits are added, to produce 10-bit codes where the first 5 bits
are 1’s. From then on another group of 8 bits is added to the code whenever all the old
codes have been used up. Notice how the pattern of all 1’s is never used as a code and is
reserved to indicate longer and longer codes. Notice also that a unary code or a general
unary code (Section 2.3.1) might have been a better choice.

Length  Code Length Code
1 00 11 11]111|00000
2 01 12 11|111)00001
3 10 :
4 11]000 41 11]111]11110
5 11|001 42 11]111]11111/00000000
6 11/010 :
: 296 11]111]11111j11111110
10 11J110 297 11]111]11111|11111111]00000000

Table 3.29: Codes Used by LZP1 and LZP2 for Match Lengths.

The compressed stream consists of a mixture of literals (bytes with ASCII codes)
and control bytes containing flags and encoded lengths. This is illustrated by the output
of the example of Section 3.16.1. The input of this example is the string xyabcabcabxy,
and the output items are x, y, a, b, ¢, a, b, 3, x, and y. The actual output stream
consists of the single control byte 11101101 followed by nine bytes with the ASCII
codes of x, y, a, b, ¢, a, b, x, and y.

Exercise 3.19: Explain the content of the control byte 111 01|10 1.

Another example of a compressed stream is the three literals x, y, and a followed
by the four match lengths 12, 12, 12, and 10. We first prepare the flags

1 (x,y) 01 (a, 12) 00 (12) 00 (12) 00 (12) 00 (10),
then substitute the codes of 12 and 10,
12y01a11]111|0000100]11]111|0000100]11|111|0000100|11|111]0000100|11|110,

and finally group together the bits that make up the control bytes. The result is

10111111 %, y, a, 00001001 11110000 10011111 00001001 11110000 10011110.
Notice that the first control byte is followed by the three literals.

The last point to be mentioned is the case ...0 lyyyyyyy zzzzzzzz. The first control
byte ends with the 0 of a pair 01, and the second byte starts with the 1 of the same
pair. This indicates a literal followed by a match length. The match length is the yyy
bits (at least some of them) in the second control byte. If the code of the match length
is long, then the zzz bits or some of them may be part of the code. The literal is either
the zzz byte or the byte following it.

LZP2 is identical to LZP1 except that literals are coded using nonadaptive Huff-
man codes. Ideally, two passes should be used; the first one counting the frequency of
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occurrence of the symbols in the input stream and the second pass doing the actual
compression. In between the passes, the Huffman code table can be constructed.

3.16.4 LZP3 and LZP4

LZP3 is similar to both LZP1 and LZP2. It uses order-4 contexts and more sophisticated
Huffman codes to encode both the match lengths and the literals. The LZP3 hash
function is

H=((C>>15) "C) &0xFFFF,

so H is a 16-bit index, to be used with an index table of size 2'6 = 64 K. In addition
to the pointers P, the index table contains also the contexts C. Thus if a context C is
hashed to an index H, the encoder expects to find the same context C in location H of the
index table. This is called context confirmation. If the encoder finds something else, or
if it finds a null pointer, it sets P to null and hashes an order-3 context. If the order-3
context confirmation also fails, the algorithm hashes the order-2 context, and if that also
fails, the algorithm sets P to null and writes a literal on the compressed stream. This
method attempts to find the highest-order context seen so far.

LZP4 uses order-5 contexts and a multistep lookup process. In step 1, the rightmost
four bytes I of the context are hashed to create a 16-bit index H according to the
following:

H=((I>>15) "I)&O0xFFFF.

Then H is used as an index to the index table that has 64K entries, each corresponding
to one value of H. Each entry points to the start of a list linking nodes that have the
same hash value. Suppose that the contexts abcde, xbcde, and mnopq hash to the same
index H= 13 (i.e., the hash function computes the same index 13 when applied to bcde
and nopq) and we are looking for context xbcde. Location 13 of the index table would
point to a list with nodes for these contexts (and possibly others that have also been
hashed to 13). The list is traversed until a node is found with bede. This node points
to a second list linking a, x, and perhaps other symbols that precede bcde. The second
list is traversed until a node with x is found. That node contains a pointer to the most
recent occurrence of context xbcde in the search buffer. If a node with x is not found,
a literal is written to the compressed stream.

This complex lookup procedure is used by LZP4 because a 5-byte context does not
fit comfortably in a single word in most current computers.

3.17 Repetition Finder

All the dictionary-based methods described so far have one thing in common: they use
a large memory buffer as a dictionary that holds fragments of text found so far. The
dictionary is used to locate strings of symbols that repeat. The method described here
is different. Instead of a dictionary it uses a fixed-size array of integers to find previous
occurrences of strings of text. The array size equals the square of the alphabet size, so it
is not very large. The method is due to Hidetoshi Yokoo [Yokoo 91], who elected not to
call it LZHY but left it nameless. The reason a name of the form LZxx was not used is
that the method does not employ a traditional Ziv-Lempel dictionary. The reason it was
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left nameless is that it does not compress very well and should therefore be considered
the first step in a new field of research rather than a mature, practical method.

The method alternates between two modes, normal and repeat. It starts in the
normal mode, where it inputs symbols and encodes them using adaptive Huffman. When
it identifies a repeated string it switches to the “repeat” mode where it outputs an escape
symbol, followed by the length of the repeated string.

Assume that the input stream consists of symbols z1zs . . . from an alphabet A. Both
encoder and decoder maintain an array REP of dimensions |A|x |A| that is initialized to
all zeros. For each input symbol z;, the encoder (and decoder) compute a value y;
according to y; = ¢ — REP[x;_1, 2;], and then update REP[x;_1, z;] := i. The 13-symbol
string

z;: X ABCDEYABCUDE Z
701 3 5 7 9 11 13

results in the following y values:

1= 1 2 3 4 5 6 7 8 910 11 12 13
vw=1 2 3 4 5 6 7 8 6 6 6 6 13
z;—1x;: XA AB BC CD DE EY YA AB BC CD DE EZ

Table 3.30a shows the state of array REP after the eighth symbol has been input and
encoded. Table 3.30b shows the state of REP after all 13 symbols have been input and
encoded.

ABCDE XY Z ABC DE XY Z
A 3 A 9
B 4 B 10
C 5 C 11
D 6 D 12
E 7 E 13
X |2 X |2
Y |8 Y | 8
/ /

Table 3.30: (a) REP at ¢ = 8. (b) REP at 7 = 13.

Perhaps a better way to explain the way vy is calculated is by the expression

1, fori=1,
Y =< 1, for ¢ > 1 and first occurrence of x;_1x;,
min(k), for i > 1 and x;_qx; identical to x;_x_1T;—k.

This shows that y is either i or is the distance k between the current string xz;_;x; and
its most recent copy z;_p_1%;—r. However, recognizing a repetition of a string is done
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by means of array REP and without using any dictionary (which is the main point of this
method).

When a string of length [ repeats itself in the input, [ consecutive identical values of
y are generated, and this is the signal for the encoder to switch to the “repeat” mode. As
long as consecutive different values of y are generated, the encoder stays in the “normal”
mode, where it encodes z; in adaptive Huffman and outputs it. When the encoder senses
Yi+1 = ¥;, it outputs x; in the normal mode, and then enters the “repeat” mode. In the
example above this happens for i = 9, so the string XABCDEYAB is output in the normal
mode.

Once in the “repeat” mode, the encoder inputs more symbols and calculates y
values until it finds the first value that differs from y;. In our example this happens at
i = 13, when the Z is input. The encoder compresses the string “CDE” (corresponding to
i = 10,11,12) in the “repeat” mode by emitting an (encoded) escape symbol, followed
by the (encoded) length of the repeated string (3 in our example). The encoder then
switches back to the normal mode, where it saves the y value for Z as y; and inputs the
next symbol.

The escape symbol must be an extra symbol, one that’s not included in the alphabet
A. Notice that only two y values, y; 1 and y;, need be saved at any time. Notice also
that the method is not very efficient, since it senses the repeating string “too late” and
encodes the first two repeating symbols in the normal mode. In our example only three
of the five repeating symbols are encoded in the “repeat” mode.

The decoder inputs and decodes the first nine symbols, decoding them into the
string XABCDEYAB while updating array REP and calculating y values. When the escape
symbol is input, ¢ has the value 9 and y; has the value 6. The decoder inputs and
decodes the length, 3, and now it has to figure out the repeated string of length 3 using
just the data in array REP, not any of the previously decoded input. Since i =9 and y;
is the distance between this string and its copy, the decoder knows that the copy started
at position ¢ — y; = 9 — 6 = 3 of the input. It scans REP, looking for a 3. It finds it at
position REP[A,B], so it starts looking for a 4 in row B of REP. It finds it in REP [B,C], so
the first symbol of the required string is C. Looking for a 5 in row C, the decoder finds it
in REP[C,D], so the second symbol is D. Looking now for a 6 in row D, the decoder finds
it in REP[D,E].

This is how a repeated string can be decoded without maintaining a dictionary.

Both encoder and decoder store values of 7 in REP, so an entry of REP should be at
least two bytes long. This way i can have values of up to 64K — 1 ~ 65,500, so the input
has to be encoded in blocks of size 64K. For an alphabet of 256 symbols, the size of REP
should therefore be 256 x 256 x 2 = 128 Kbytes, not very large. For larger alphabets
REP may have to be uncomfortably large.

In the normal mode, symbols (including the escape) are encoded using adaptive
Huffman (Section 2.9). In the repeat mode, lengths are encoded in a recursive prefix
code denoted Q(i), where k is a positive integer (see Section 2.3 for prefix codes).
Assuming that ¢ is an integer whose binary representation is la, the prefix code Q)
of i is defined by

Qo(i) = 1'*0a, @) = {(1)’621«—1@ - 1), z i }:



224 3. Dictionary Methods

where |a| is the length of a and 1% is a string of |a| ones. Table 3.31 shows some of
the proposed codes; however, any of the prefix codes of Section 2.3 can be used instead
of the Qx (i) codes proposed here.

i o Qo) Q1(1)  Q2(4)
1 null 0 0 0
2 0 100 10 10
3 1 101 1100 110
4 00 11000 1101 11100
5 01 11001 111000 11101
6
7
8
9

10 11010 111001 1111000
11 11011 111010 1111001
000 1110000 111011 1111010
001 1110001 11110000 1111011

Table 3.31: Proposed Prefix Code.

The developer of this method, Hidetoshi Yokoo, indicates that compression perfor-
mance is not very sensitive to the precise value of k, and he proposes k& = 2 for best
overall performance.

As mentioned earlier, the method is not very efficient, which is why it should be
considered the start of a new field of research where repeated strings are identified
without the need for a large dictionary.

3.18 UNIX Compression

In the large UNIX world, compress used to be the most common compression utility
(although GNU gzip has become more popular because it is free from patent claims,
is faster, and provides superior compression). This utility (also called LZC) uses LZW
with a growing dictionary. It starts with a small dictionary of just 2° = 512 entries
(with the first 256 of them already filled up). While this dictionary is being used, 9-
bit pointers are written onto the output stream. When the original dictionary fills up,
its size is doubled, to 1024 entries, and 10-bit pointers are used from this point. This
process continues until the pointer size reaches a maximum set by the user (it can be
set to between 9 and 16 bits, with 16 as the default value). When the largest allowed
dictionary fills up, the program continues without changing the dictionary (which then
becomes static), but with monitoring the compression ratio. If the ratio falls below a
predefined threshold, the dictionary is deleted, and a new 512-entry dictionary is started.
This way, the dictionary never gets “too out of date.”

Decoding is done by the uncompress command, which implements the LZC decoder.
Its main task is to maintain the dictionary in the same way as the encoder.

Two improvements to LZC, proposed by [Horspool 91], are listed below:

1. Encode the dictionary pointers with the phased-in binary codes of Section 2.9.1. Thus
if the dictionary size is 2° = 512 entries, pointers can be encoded in either 8 or 9 bits.



3.19 GIF Images 225

2. Determine all the impossible strings at any point. Suppose that the current string
in the look-ahead buffer is “abcd...” and the dictionary contains strings abc and abca
but not abcd. The encoder will output, in this case, the pointer to abc and will start
encoding a new string starting with d. The point is that after decoding abc, the decoder
knows that the next string cannot start with an a (if it did, an abca would have been
encoded, instead of abc). In general, if S is the current string, then the next string
cannot start with any symbol x that satisfies “Sx is in the dictionary.”

This knowledge can be used by both the encoder and decoder to reduce redundancy
even further. When a pointer to a string should be output, it should be coded, and the
method of assigning the code should eliminate all the strings that are known to be
impossible at that point. This may result in a somewhat shorter code but is probably
too complex to justify its use in practice.

3.19 GIF Images

GIF—the graphics interchange format—was developed by Compuserve Information Ser-
vices in 1987 as an efficient, compressed graphics file format, which allows for images to
be sent between different computers. The original version of GIF is known as GIF 87a.
The current standard is GIF 89a and, at the time of writing, can be freely obtained
as the file http://delcano.mit.edu/info/gif.txt. GIF is not a data compression
method; it is a graphics file format that uses a variant of LZW to compress the graphics
data (see [Blackstock 87]). This section reviews only the data compression aspects of
GIF.

In compressing data, GIF is very similar to compress and uses a dynamic, growing
dictionary. It starts with the number of bits per pixel b as a parameter. For a monochro-
matic image, b = 2; for an image with 256 colors or shades of gray, b = 8. The dictionary
starts with 207! entries and is doubled in size each time it fills up, until it reaches a size
of 22 = 4,096 entries, where it remains static. At such a point, the encoder monitors
the compression ratio and may decide to discard the dictionary at any point and start
with a new, empty one. When making this decision, the encoder emits the value 2° as
the clear code, which is the sign for the decoder to discard its dictionary.

The pointers, which get longer by 1 bit from one dictionary to the next, are accu-
mulated and are output in blocks of 8-bit bytes. Each block is preceded by a header
that contains the block size (255 bytes maximum) and is terminated by a byte of eight
zeros. The last block contains, just before the terminator, the eof value, which is 2° + 1.
An interesting feature is that the pointers are stored with their least significant bit on
the left. Consider, for example, the following 3-bit pointers 3, 7, 4, 1, 6, 2, and 5. Their
binary values are 011, 111, 100, 001, 110, 010, and 101, so they are packed in 3 bytes
110101001]1100001111110....

The GIF format is commonly used today by web browsers, but it is not an efficient
image compressor. GIF scans the image row by row, so it discovers pixel correlations
within a row, but not between rows. We can say that GIF compression is inefficient
because GIF is one-dimensional while an image is two-dimensional. An illustrative
example is the two simple images of Figure 4.3a,b (Section 4.1). Saving both in GIF89
has resulted in file sizes of 1053 and 1527 bytes, respectively.
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Most graphics file formats use some kind of compression. For more information on
those files, see [Murray and vanRyper 94].

3.20 RAR and WinRAR

The popular RAR software is the creation of Eugene Roshal, who started it as his
university doctoral dissertation. RAR is an acronym that stands for Roshal ARchive (or
Roshal ARchiver). The current developer is Eugene’s brother Alexander Roshal. The
following is a list of its most important features:

= RAR is currently available from [rarlab 06], as shareware, for Windows (WinRAR),
Pocket PC, Macintosh OS X, Linux, DOS, and FreeBSD. WinRAR has a graphical user
interface, whereas the other versions support only a command line interface.

= WinRAR provides complete support for RAR and ZIP archives and can decompress
(but not compress) CAB, ARJ, LZH, TAR, GZ, ACE, UUE, BZ2, JAR, ISO, 7Z, and
Z archives.

s In addition to compressing data, WinRAR can encrypt data with the advanced
encryption standard (AES-128).

= WinRAR can compress files up to 8,589 billion Gb in size (approximately 9x10'®
bytes).

s Files compressed in WinRAR can be self-extracting (SFX) and can come from
different volumes.

m It is possible to combine many files, large and small, into a so-called “solid” archive,
where they are compressed together. This may save 10-50% compared to compressing
each file individually.

»  The RAR software can optionally generate recovery records and recovery volumes
that make it possible to reconstruct damaged archives. Redundant data, in the form of
a Reed-Solomon error-correcting code, can optionally be added to the compressed file
for increased reliability.

The user can specify the amount of redundancy (as a percentage of the original
data size) to be built into the recovery records of a RAR archive. A large amount of
redundancy makes the RAR file more resistant to data corruption, thereby allowing
recovery from more serious damage. However, any redundant data reduces compression
efficiency, which is why compression and reliability are opposite concepts.

= Authenticity information may be included for extra security. RAR software saves
information on the last update and name of the archive.

= An intuitive wizard especially designed for novice users. The wizard makes it easy
to use all of RAR’s features through a simple question and answer procedure.

m  Excellent drag-and-drop features. The user can drag files from WinRAR to other
programs, to the desktop, or to any folder. An archive dropped on WinRAR is immedi-
ately opened to display its files. A file dropped on an archive that’s open in WinRAR
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is immediately added to the archive. A group of files or folders dropped on WinRAR
automatically becomes a new archive.

= RAR offers NTFS and Unicode support (see [ntfs 06] for NTFS).

»  WinRAR is available in over 35 languages.

These features, combined with excellent compression, good compression speed, an
attractive graphical user interface, and backup facilities, make RAR one of the best
overall compression tools currently available.

The RAR algorithm is generally considered proprietary, and the following quote
(from [donationcoder 06]) sheds some light on what this implies

The fact that the RAR encoding algorithm is proprietary is an issue worth
considering. It means that, unlike ZIP and 7z and almost all other compression
algorithms, only the official WinRAR programs can create RAR archives (al-
though other programs can decompress them). Some would argue that this is
unhealthy for the software industry and that standardizing on an open format
would be better for everyone in the long run. But for most users, these issues

are academic; WinRAR offers great support for both ZIP and RAR formats.

Proprietary

A term that indicates that a party, or proprietor, exercises private ownership, control,
or use over an item of property, usually to the exclusion of other parties.
—From http://www.wikipedia.org/

The following illuminating description was obtained directly from Eugene Roshal,
the designer of RAR. (The source code of the RAR decoder is available at [unrarsrc 06],
but only on condition that it is not used to reverse-engineer the encoder.)

RAR has two compression modes, general and special. The general mode employs
an LZSS-based algorithm similar to ZIP Deflate (Section 3.23). The size of the sliding
dictionary in RAR can be varied from 64 KB to 4 MB (with a 4 MB default value),
and the minimum match length is 2. Literals, offsets, and match lengths are compressed
further by a Huffman coder (recall that Deflate works similarly).

Starting at version 3.0, RAR also uses a special compression mode to improve the
compression of text-like data. This mode is based on the PPMD algorithm (also known
as PPMII) by Dmitry Shkarin.

RAR contains a set of filters to preprocess audio (in wav or au formats), true color
data, tables, and executables (32-bit x86 and Itanium, see note below). A data-analyzing
module selects the appropriate filter and the best algorithm (general or PPMD), depend-
ing on the data to be compressed.

(Note: The 80x86 family of processors was originally developed by Intel with a word
length of 16 bits. Because of its tremendous success, its architecture was extended to
32-bit words and is currently referred to as IA-32 [Intel Architecture, 32-bit]. See [IA-
32 06] for more information. The Itanium is an TA-64 microprocessor developed jointly
by Hewlett-Packard and Intel.)
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In addition to its use as Roshal ARchive, the acronym RAR has many other meanings,
a few of which are listed here.

(1) Remote Access Router (a network device used to connect remote sites via private
lines or public carriers). (2) Royal Anglian Regiment, a unit of the British Army. (3)
Royal Australian Regiment, a unit of the Australian Army. (4) Resource Adapter, a
specific module of the Java EE platform. (5) The airport code of Rarotonga, Cook
Islands. (6) Revise As Required (editors’ favorite). (7) Road Accident Rescue.

See more at [acronyms 06].

Rarissimo, by [softexperience 06], is a file utility intended to automatically compress
and decompress files in WinRAR. Rarissimo by itself is useless. It can be used only if
WinRAR is already installed in the computer. The Rarissimo user specifies a number
of folders for Rarissimo to watch, and Rarissimo compresses or decompresses any files
that have been modified in these folders. It can also move the modified files to target
folders. The user also specifies how often (in multiples of 10 sec) Rarissimo should check
the folders.

For each folder to be watched, the user has to specify RAR or UnRAR and a target
folder. If RAR is specified, then Rarissimo employs WinRAR to compress each file that
has been modified since the last check, and then moves that file to the target folder. If
the target folder resides on another computer, this move amounts to an FTP transfer.
If UnRAR has been specified, then Rarissimo employs WinRAR to decompress all the
RAR-compressed files found in the folder and then moves them to the target folder.

An important feature of Rarissimo is that it preserves NTFS alternate streams
(see [ntfs 06]). This means that Rarissimo can handle Macintosh files that happen to
reside on the PC; it can compress and decompress them while preserving their data and
resource forks.

3.21 The V.42bis Protocol

The V.42bis protocol is a set of rules, or a standard, published by the ITU-T (page 104)
for use in fast modems. It is based on the existing V.32bis protocol and is supposed to
be used for fast transmission rates, up to 57.6K baud. Thomborson [Thomborson 92] in
a detailed reference for this standard. The ITU-T standards are recommendations, but
they are normally followed by all major modem manufacturers. The standard contains
specifications for data compression and error correction, but only the former is discussed
here.

V.42bis specifies two modes: a transparent mode, where no compression is used,
and a compressed mode using an LZW variant. The former is used for data streams
that don’t compress well and may even cause expansion. A good example is an already
compressed file. Such a file looks like random data; it does not have any repetitive
patterns, and trying to compress it with LZW will fill up the dictionary with short,
two-symbol, phrases.

The compressed mode uses a growing dictionary, whose initial size is negotiated
between the modems when they initially connect. V.42bis recommends a dictionary size
of 2,048 entries. The minimum size is 512 entries. The first three entries, corresponding
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to pointers 0, 1, and 2, do not contain any phrases and serve as special codes. Code
0 (enter transparent mode—ETM) is sent when the encoder notices a low compression
ratio, and it decides to start sending uncompressed data. (Unfortunately, V.42bis does
not say how the encoder should test for low compression.) Code 1 is FLUSH, to flush
data. Code 2 (STEPUP) is sent when the dictionary is almost full and the encoder
decides to double its size. A dictionary is considered almost full when its size exceeds
that of a special threshold (which is also negotiated by the modems).

When the dictionary is already at its maximum size and it becomes full, V.42bis
recommends a reuse procedure. The least-recently-used phrase is located and deleted,
to make room for a new phrase. This is done by searching the dictionary from entry 256
for the first phrase that is not a prefix to any other phrase. Suppose that the phrase
abcd is found, and there are no phrases of the form abcdx for any x. This means that
abcd has not been used since it was created, and that it is the oldest such phrase. It
therefore makes sense to delete it, since it reflects an old pattern in the input stream.
This way, the dictionary always reflects recent patterns in the input.

...there is an ever-increasing body of opinion which holds that The Ultra-Complete
Maximegalon Dictionary is not worth the fleet of lorries it takes to cart its microstored
edition around in. Strangely enough, the dictionary omits the word “floopily,” which
simply means “in the manner of something which is floopy.”

—Douglas Adams, Life, the Universe, and Everything (1982)

3.22 Various LZ Applications

ARC is a compression/archival /cataloging program developed by Robert A. Freed in the
mid-1980s. It offers good compression and the ability to combine several files into one
file, called an archive. Currently (early 2003) ARC is outdated and has been superseded
by the newer PK applications.

PKArc is an improved version of ARC. It was developed by Philip Katz, who has
founded the PKWare company [PKWare 03], which still markets the PKzip, PKunzip,
and PKlite software. The PK programs are faster and more general than ARC and also
provide for more user control. Past editions of this book have more information on these
applications.

LHArc, from Haruyasu Yoshizaki, and LHA, by Haruhiko Okumura and Haruyasu
Yoshizaki, use adaptive Huffman coding with features drawn from LZSS. The LZ window
size may be up to 16K bytes. ARJ is another older compression tool by Robert K. Jung
that uses the same algorithm, but increases the LZ window size to 26624 bytes. A similar
program, called ICE (for the old MS-DOS operating system), seems to be a faked version
of either LHarc or LHA. [Okumura 98] has some information about LHArc and LHA as
well as a history of data compression in Japan.

Two newer applications, popular with Microsoft Windows users, are RAR/WinRAR
[rarlab 06] (Section 3.20) and ACE/WinAce [WinAce 03]. They use LZ with a large
search buffer (up to 4 Mb) combined with Huffman codes. They are available for several
platforms and offer many useful features.
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3.23 Deflate: Zip and Gzip

Deflate is a popular compression method that was originally used in the well-known Zip
and Gzip software and has since been adopted by many applications, the most important
of which are (1) the HTTP protocol ([RFC1945 96] and [RFC2616 99]), (2) the PPP
compression control protocol ([RFC1962 96] and [RFC1979 96]), (3) the PNG (Portable
Network Graphics, Section 3.25) and MNG (Multiple-Image Network Graphics) graphics
file formats ([PNG 03] and [MNG 03]), and (4) Adobe’s PDF (Portable Document File,
Section 8.13) [PDF 01].

Deflate was designed by Philip Katz as a part of the Zip file format and implemented
in his PKZIP software [PKWare 03]. Both the ZIP format and the Deflate method are
in the public domain, which allowed implementations such as Info-ZIP’s Zip and Unzip
(essentially, PKZIP and PKUNZIP clones) to appear on a number of platforms. Deflate
is described in [RFC1951 96].

Phillip W. Katz was born in 1962. He received a bachelor’s degree in computer science
from the University of Wisconsin at Madison. Always interested in writing software,
he started working in 1984 as a programmer for Allen-Bradley Co. developing pro-
grammable logic controllers for the industrial automation industry. He later worked
for Graysoft, another software company, in Milwaukee, Wisconsin. At about that time
he became interested in data compression and founded PKWare in 1987 to develop,
implement, and market software products such as PKarc and PKzip. For a while, the
company was very successful selling the programs as shareware.

Always a loner, Katz suffered from personal and legal problems, started drinking
heavily, and died on April 14, 2000 from complications related to chronic alcoholism.
He was 37 years old.

After his death, PKWare was sold, in March 2001, to a group of investors. They
changed its management and the focus of its business. PKWare currently targets
the corporate market, and emphasises compression combined with encryption. Their
product line runs on a wide variety of platforms.

The most notable implementation of Deflate is zlib, a portable and free compression
library ([zlib 03] and [RFC1950 96]) by Jean-Loup Gailly and Mark Adler who designed
and implemented it to be free of patents and licensing requirements. This library (the
source code is available at [Deflate 03]) implements the ZLIB and GZIP file formats
([RFC1950 96] and [RFC1952 96]), which are at the core of most Deflate applications,
including the popular Gzip software.

Deflate is based on a variation of LZ77 combined with Huffman codes. We start
with a simple overview based on [Feldspar 03] and follow with a full description based
on [RFC1951 96].

The original LZ77 method (Section 3.3) tries to match the text in the look-ahead
buffer to strings already in the search buffer. In the example

search buffer look-ahead
...0ld[|. .the a..then...there...[the new...]...more

the look-ahead buffer starts with the string the.,, which can be matched to one of three
strings in the search buffer. The longest match has a length of 4. LZ77 writes tokens on
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the compressed stream, where each token is a triplet (offset, length, next symbol). The
third component is needed in cases where no string has been matched (imagine having
che instead of the in the look-ahead buffer) but it is part of every token, which reduces
the performance of LZ77. The LZ77 algorithm variation used in Deflate eliminates the
third component and writes a pair (offset, length) on the compressed stream. When no
match is found, the unmatched character is written on the compressed stream instead
of a token. Thus, the compressed stream consists of three types of entities: literals (un-
matched characters), offsets (termed “distances” in the Deflate literature), and lengths.
Deflate actually writes Huffman codes on the compressed stream for these entities, and
it uses two code tables—one for literals and lengths and the other for distances. This
makes sense because the literals are normally bytes and are therefore in the interval
[0,255], and the lengths are limited by Deflate to 258. The distances, however, can be
large numbers because Deflate allows for a search buffer of up to 32Kbytes.

When a pair (length, distance) is determined, the encoder searches the table of
literal/length codes to find the code for the length. This code (we later use the term
“edoc” for it) is then replaced by a Huffman code that’s written on the compressed
stream. The encoder then searches the table of distance codes for the code of the
distance and writes that code (a special prefix code with a fixed, 5-bit prefix) on the
compressed stream. The decoder knows when to expect a distance code, because it
always follows a length code.

The LZ77 variant used by Deflate defers the selection of a match in the following
way. Suppose that the two buffers contain

search buffer look-ahead
...0ld,]|..she needs..then...there...[the new...]...more input

The longest match is 3. Before selecting this match, the encoder saves the t from
the look-ahead buffer and starts a secondary match where it tries to match he new. ..
with the search buffer. If it finds a longer match, it outputs t as a literal, followed
by the longer match. There is also a 3-valued parameter that controls this secondary
match attempt. In the “normal” mode of this parameter, if the primary match was long
enough (longer than a preset parameter), the secondary match is reduced (it is up to the
implementor to decide how to reduce it). In the “high-compression” mode, the encoder
always performs a full secondary match, thereby improving compression but spending
more time on selecting a match. In the “fast” mode, the secondary match is omitted.

Deflate compresses an input data file in blocks, where each block is compressed
separately. Blocks can have different lengths and the length of a block is determined by
the encoder based on the sizes of the various prefix codes used (their lengths are limited
to 15 bits) and by the memory available to the encoder (except that blocks in mode 1
are limited to 65,535 bytes of uncompressed data). The Deflate decoder must be able
to decode blocks of any size. Deflate offers three modes of compression, and each block
can be in any mode. The modes are as follows:

1. No compression. This mode makes sense for files or parts of files that are
incompressible (i.e., random) or already compressed, or for cases where the compression
software is asked to segment a file without compression. A typical case is a user who
wants to move an 8 Gb file to another computer but has only a DVD “burner.” The user
may want to segment the file into two 4 Gb segments without compression. Commercial
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compression software based on Deflate can use this mode of operation to segment the
file. This mode uses no code tables. A block written on the compressed stream in this
mode starts with a special header indicating mode 1, followed by the length LEN of the
data, followed by LEN bytes of literal data. Notice that the maximum value of LEN is
65,535.

2. Compression with fixed code tables. Two code tables are built into the Deflate
encoder and decoder and are always used. This speeds up both compression and de-
compression and has the added advantage that the code tables don’t have to be written
on the compressed stream. The compression performance, however, may suffer if the
data being compressed is statistically different from the data used to set up the code
tables. Literals and match lengths are located in the first table and are replaced by a
code (called “edoc”) that is, in turn, replaced by a prefix code that’s output to the com-
pressed stream. Distances are located in the second table and are replaced by special
prefix codes that are output to the compressed stream. A block written on the com-
pressed stream in this mode starts with a special header indicating mode 2, followed by
the compressed data in the form of prefix codes for the literals and lengths, and special
prefix codes for the distances. The block ends with a single prefix code for end-of-block.

3. Compression with individual code tables generated by the encoder for the partic-
ular data that’s being compressed. A sophisticated Deflate encoder may gather statistics
about the data as it compresses blocks, and may be able to construct improved code
tables as it proceeds from block to block. There are two code tables, for literals/lengths
and for distances. They again have to be written on the compressed stream, and they
are written in compressed format. A block written by the encoder on the compressed
stream in this mode starts with a special header, followed by (1) a compressed Huffman
code table and (2) the two code tables, each compressed by the Huffman codes that
preceded them. This is followed by the compressed data in the form of prefix codes for
the literals, lengths, and distances, and ends with a single code for end-of-block.

3.23.1 The Details

Each block starts with a 3-bit header where the first bit is 1 for the last block in the file
and 0 for all other blocks. The remaining two bits are 00, 01, or 10, indicating modes
1, 2, or 3, respectively. Notice that a block of compressed data does not always end on
a byte boundary. The information in the block is sufficient for the decoder to read all
the bits of the compressed block and recognize the end of the block. The 3-bit header
of the next block immediately follows the current block and may therefore be located at
any position in a byte on the compressed stream.

The format of a block in mode 1 is as follows:

1. The 3-bit header 000 or 100.

2. The rest of the current byte is skipped, and the next four bytes contain LEN and
the one’s complement of LEN (as unsigned 16-bit numbers), where LEN is the number of
data bytes in the block. This is why the block size in this mode is limited to 65,535
bytes.

3. LEN data bytes.

The format of a block in mode 2 is different:
1. The 3-bit header 001 or 101.
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2. This is immediately followed by the fixed prefix codes for literals/lengths and
the special prefix codes of the distances.
3. Code 256 (rather, its prefix code) designating the end of the block.

Extra Extra Extra
Code bits Lengths Code bits Lengths Code bits Lengths

257 0 3 267 1 15,16 277 4 67-82
258 0 4 268 1 17,18 278 4 83-98
259 0 5 269 2 19-22 279 4 99-114
260 0 6 270 2 23-26 280 4 115-130
261 0 7 271 2 27-30 281 5 131-162
262 0 8 272 2 31-34 282 5  163-194
263 0 9 273 3 3542 283 5 195-226
264 0 10 274 3 43-50 284 5 227-257
265 1 11,12 275 3 51-58 285 0 258
266 1 13,14 276 3 59-66

Table 3.32: Literal/Length Edocs for Mode 2.

edoc Bits Prefix codes

0-143 8 00110000-10111111
144-255 9 110010000-111111111
256-279 7 0000000-0010111
280287 8 11000000-11000111

Table 3.33: Huffman Codes for Edocs in Mode 2.

Mode 2 uses two code tables: one for literals and lengths and the other for distances.
The codes of the first table are not what is actually written on the compressed stream,
so in order to remove ambiguity, the term “edoc” is used here to refer to them. Each
edoc is converted to a prefix code that’s output to the compressed stream. The first
table allocates edocs 0 through 255 to the literals, edoc 256 to end-of-block, and edocs
257-285 to lengths. The latter 29 edocs are not enough to represent the 256 match
lengths of 3 through 258, so extra bits are appended to some of those edocs. Table 3.32
lists the 29 edocs, the extra bits, and the lengths represented by them. What is actually
written on the compressed stream is prefix codes of the edocs (Table 3.33). Notice that
edocs 286 and 287 are never created, so their prefix codes are never used. We show later
that Table 3.33 can be represented by the sequence of code lengths

8,8,...,8,9,9,...,9,7,7,...,7.8,8,....8, (3.1)
——— —— ~———
144 112 24 8

but any Deflate encoder and decoder include the entire table instead of just the sequence
of code lengths. There are edocs for match lengths of up to 258, so the look-ahead buffer
of a Deflate encoder can have a maximum size of 258, but can also be smaller.
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Examples. If a string of 10 symbols has been matched by the LZ77 algorithm,
Deflate prepares a pair (length, distance) where the match length 10 becomes edoc 264,
which is written as the 7-bit prefix code 0001000. A length of 12 becomes edoc 265
followed by the single bit 1. This is written as the 7-bit prefix code 0001010 followed by
1. A length of 20 is converted to edoc 269 followed by the two bits 01. This is written
as the nine bits 0001101|01. A length of 256 becomes edoc 284 followed by the five bits
11110. This is written as 11000101]11110. A match length of 258 is indicated by edoc
285 whose 8-bit prefix code is 11000110. The end-of-block edoc of 256 is written as seven
zero bits.

The 30 distance codes are listed in Table 3.34. They are special prefix codes with
fixed-size 5-bit prefixes that are followed by extra bits in order to represent distances
in the interval [1,32768]. The maximum size of the search buffer is therefore 32,768,
but it can be smaller. The table shows that a distance of 6 is represented by 00100|1, a
distance of 21 becomes the code 01000|101, and a distance of 8195 corresponds to code
11010]000000000010.

Extra Extra Extra
Code bits Distance Code bits Distance Code bits Distance

0 0 1 10 4 33-48 20 9 1025-1536
1 0 2 11 4 49-64 21 9 1537-2048
2 0 3 12 5 65-96 22 10 2049-3072
3 0 4 13 5 97-128 23 10 3073-4096
4 1 5,6 14 6 129-192 24 11 4097-6144
5 1 7.8 15 6 193-256 25 11 6145-8192
6 2 9-12 16 7 257-384 26 12 8193-12288
7 2 13-16 17 7 385-512 27 12 12289-16384
8 3 17-24 18 8 513-768 28 13 1638524576
9 3 8

25-32 19 769-1024 29 13 24577-32768

Table 3.34: Thirty Prefix Distance Codes in Mode 2.

3.23.2 Format of Mode-3 Blocks

In mode 3, the encoder generates two prefix code tables, one for the literals/lengths and
the other for the distances. It uses the tables to encode the data that constitutes the
block. The encoder can generate the tables in any way. The idea is that a sophisticated
Deflate encoder may collect statistics as it inputs the data and compresses blocks. The
statistics are used to construct better code tables for later blocks. A naive encoder may
use code tables similar to the ones of mode 2 or may even not generate mode 3 blocks at
all. The code tables have to be written on the compressed stream, and they are written
in a highly-compressed format. As a result, an important part of Deflate is the way it
compresses the code tables and outputs them. The main steps are (1) Each table starts
as a Huffman tree. (2) The tree is rearranged to bring it to a standard format where it
can be represented by a sequence of code lengths. (3) The sequence is compressed by
run-length encoding to a shorter sequence. (4) The Huffman algorithm is applied to the
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elements of the shorter sequence to assign them Huffman codes. This creates a Huffman
tree that is again rearranged to bring it to the standard format. (5) This standard tree
is represented by a sequence of code lengths which are written, after being permuted
and possibly truncated, on the output. These steps are described in detail because of
the originality of this unusual method.

Recall that the Huffman code tree generated by the basic algorithm of Section 2.8
is not unique. The Deflate encoder applies this algorithm to generate a Huffman code
tree, then rearranges the tree and reassigns the codes to bring the tree to a standard
form where it can be expressed compactly by a sequence of code lengths. (The result is
reminiscent of the canonical Huffman codes of Section 2.8.6.) The new tree satisfies the
following two properties:

1. The shorter codes appear on the left, and the longer codes appear on the right
of the Huffman code tree.

2. When several symbols have codes of the same length, the (lexicographically)
smaller symbols are placed on the left.

The first example employs a set of six symbols A-F with probabilities 0.11, 0.14,
0.12, 0.13, 0.24, and 0.26, respectively. Applying the Huffman algorithm results in a
tree similar to the one shown in Figure 3.35a. The Huffman codes of the six symbols
are 000, 101, 001, 100, 01, and 11. The tree is then rearranged and the codes reassigned
to comply with the two requirements above, resulting in the tree of Figure 3.35b. The
new codes of the symbols are 100, 101, 110, 111, 00, and 01. The latter tree has the
advantage that it can be fully expressed by the sequence 3, 3, 3, 3, 2, 2 of the lengths of
the codes of the six symbols. The task of the encoder in mode 3 is therefore to generate
this sequence, compress it, and write it on the compressed stream.

0 1

0 1 E T | i 1|
A C 0 00 01 A B C D
000 001

Figure 3.35: Two Huffman Trees.

The code lengths are limited to at most four bits each. Thus, they are integers in
the interval [0, 15], which implies that a code can be at most 15 bits long (this is one
factor that affects the Deflate encoder’s choice of block lengths in mode 3).

The sequence of code lengths representing a Huffman tree tends to have runs of
identical values and can have several runs of the same value. For example, if we assign
the probabilities 0.26, 0.11, 0.14, 0.12, 0.24, and 0.13 to the set of six symbols A—F, the
Huffman algorithm produces 2-bit codes for A and E and 3-bit codes for the remaining
four symbols. The sequence of these code lengths is 2, 3, 3, 3, 2, 3.
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The decoder reads a compressed sequence, decompresses it, and uses it to reproduce
the standard Huffman code tree for the symbols. We first show how such a sequence is
used by the decoder to generate a code table, then how it is compressed by the encoder.

Given the sequence 3, 3, 3, 3, 2, 2, the Deflate decoder proceeds in three steps as
follows:

1. Count the number of codes for each code length in the sequence. In our example,
there are no codes of length 1, two codes of length 2, and four codes of length 3.

2. Assign a base value to each code length. There are no codes of length 1, so
they are assigned a base value of 0 and don’t require any bits. The two codes of length
2 therefore start with the same base value 0. The codes of length 3 are assigned a
base value of 4 (twice the number of codes of length 2). The C code shown here (after
[RFC1951 96]) was written by Peter Deutsch. It assumes that step 1 leaves the number
of codes for each code length n in bl_count [n].

code = 0;

bl_count[0] = O;

for (bits = 1; bits <= MAX_BITS; bits++) {
code = (code + bl_count[bits-1]) << 1;
next codel[bits] = code;

}

3. Use the base value of each length to assign consecutive numerical values to all
the codes of that length. The two codes of length 2 start at 0 and are therefore 00 and
01. They are assigned to the fifth and sixth symbols E and F. The four codes of length
3 start at 4 and are therefore 100, 101, 110, and 111. They are assigned to the first four
symbols A-D. The C code shown here (by Peter Deutsch) assumes that the code lengths
are in tree[I].Len and it generates the codes in tree[I].Codes.

for (n = 0; n <= max code; n++) {
len = treeln].Len;
if (len != 0) {
tree[n] .Code = next_code[len];
next_code[len] ++;
}
}

In the next example, the sequence 3, 3, 3, 3, 3, 2, 4, 4 is given and is used to generate
a table of eight prefix codes. Step 1 finds that there are no codes of length 1, one code
of length 2, five codes of length 3, and two codes of length 4. The length-1 codes are
assigned a base value of 0. There are zero such codes, so the next group is assigned the
base value of twice 0. This group contains one code, so the next group (length-3 codes)
is assigned base value 2 (twice the sum 0+ 1). This group contains five codes, so the last
group is assigned base value of 14 (twice the sum 2 + 5). Step 3 simply generates the
five 3-bit codes 010, 011, 100, 101, and 110 and assigns them to the first five symbols.
It then generates the single 2-bit code 00 and assigns it to the sixth symbol. Finally,
the two 4-bit codes 1110 and 1111 are generated and assigned to the last two (seventh
and eighth) symbols.
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Given the sequence of code lengths of Equation (3.1), we apply this method to
generate its standard Huffman code tree (listed in Table 3.33).

Step 1 finds that there are no codes of lengths 1 through 6, that there are 24 codes
of length 7, 152 codes of length 8, and 112 codes of length 9. The length-7 codes are
assigned a base value of 0. There are 24 such codes, so the next group is assigned the
base value of 2(0 + 24) = 48. This group contains 152 codes, so the last group (length-9
codes) is assigned base value 2(48 + 152) = 400. Step 3 simply generates the 24 7-bit
codes 0 through 23, the 152 8-bit codes 48 through 199, and the 112 9-bit codes 400
through 511. The binary values of these codes are listed in Table 3.33.

“Must you deflate romantic rhetoric? Besides, the Astabigans have plenty of
visitors from other worlds who will be viewing her.”

—Roger Zelazny, Doorways in the Sand

It is now clear that a Huffman code table can be represented by a short sequence
(termed SQ) of code lengths (herein called CLs). This sequence is special in that it
tends to have runs of identical elements, so it can be highly compressed by run-length
encoding. The Deflate encoder compresses this sequence in a three-step process where
the first step employs run-length encoding; the second step computes Huffman codes for
the run lengths and generates another sequence of code lengths (to be called CCLs) for
those Huffman codes. The third step writes a permuted, possibly truncated sequence of
the CCLs on the compressed stream.

Step 1. When a CL repeats more than three times, the encoder considers it a run.
It appends the CL to a new sequence (termed SSQ), followed by the special flag 16
and by a 2-bit repetition factor that indicates 3—6 repetitions. A flag of 16 is therefore
preceded by a CL and followed by a factor that indicates how many times to copy the
CL. Thus, for example, if the sequence to be compressed contains six consecutive 7’s, it is
compressed to 7, 16, 105 (the repetition factor 10 indicates five consecutive occurrences
of the same code length). If the sequence contains 10 consecutive code lengths of 6, it
will be compressed to 6, 16, 112, 16, 002 (the repetition factors 115 and 005 indicate six
and three consecutive occurrences, respectively, of the same code length).

Experience indicates that CLs of zero are very common and tend to have long runs.
(Recall that the codes in question are codes of literals/lengths and distances. Any given
data file to be compressed may be missing many literals, lengths, and distances.) This is
why runs of zeros are assigned the two special flags 17 and 18. A flag of 17 is followed by
a 3-bit repetition factor that indicates 3-10 repetitions of CL 0. Flag 18 is followed by a
7-bit repetition factor that indicates 11-138 repetitions of CL 0. Thus, six consecutive
zeros in a sequence of CLs are compressed to 17, 115, and 12 consecutive zeros in an SQ
are compressed to 18, 01s.

The sequence of CLs is compressed in this way to a shorter sequence (to be termed
SSQ) of integers in the interval [0,18]. An example may be the sequence of 28 CLs

4,4,4,4,4,3,3,3,6,6,6,6,6,6,6,6,6,6,0,0,0,0,0,0,2,2 2, 2
that’s compressed to the 16-number SSQ
4, 16, 019, 3, 3, 3, 6, 16, 115, 16, 002, 17, 115, 2, 16, 002,
or, in decimal, 4,16, 1, 3, 3, 3, 6, 16, 3, 16, 0, 17, 3, 2, 16, 0.

Step 2. Prepare Huffman codes for the SSQ in order to compress it further. Our

example SSQ contains the following numbers (with their frequencies in parentheses):
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0(2), 1(1), 2(1), 3(5), 4(1), 6(1), 16(4), 17(1). Its initial and standard Huffman trees
are shown in Figure 3.36a,b. The standard tree can be represented by the SSQ of eight
lengths 4, 5, 5, 1, 5, 5, 2, and 4. These are the lengths of the Huffman codes assigned
to the eight numbers 0, 1, 2, 3, 4, 6, 16, and 17, respectively.

Step 3. This SSQ of eight lengths is now extended to 19 numbers by inserting zeros
in the positions that correspond to unused CCLs.

Position: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CCL: 4551505000 0 0 0 0 0 0 2 4 0
Next, the 19 CCLs are permuted according to

Position: 16 17 18 0 8 7 9 6 10 5 11 4 12 3 13 2 14 1 15

CCL: 2 4 040005 00 O5 01 05 05 0

The reason for the permutation is to end up with a sequence of 19 CCLs that’s likely
to have trailing zeros. The SSQ of 19 CCLs minus its trailing zeros is written on the
compressed stream, preceded by its actual length, which can be between 4 and 19. Each
CCL is written as a 3-bit number. In our example, there is just one trailing zero, so
the 18-number sequence 2, 4, 0, 4, 0, 0, 0, 5,0, 0, 0, 5, 0, 1, 0, 5, 0, 5 is written on the
compressed stream as the final, compressed code of one prefix-code table. In mode 3,
each block of compressed data requires two prefix-code tables, so two such sequences are
written on the compressed stream.

° 9

T
—— —®n

O 00 o2, © Dy 00 o

00010 00011 00100 00101 11100 11101 11110 11111

(a) (b)

Figure 3.36: Two Huffman Trees for Code Lengths.

A reader finally reaching this point (sweating profusely with such deep concentration
on so many details) may respond with the single word “insane.” This scheme of Phil
Katz for compressing the two prefix-code tables per block is devilishly complex and hard
to follow, but it works!

The format of a block in mode 3 is as follows:

1. The 3-bit header 010 or 110.

2. A 5-bit parameter HLIT indicating the number of codes in the literal /length code
table. This table has codes 0-256 for the literals, code 256 for end-of-block, and the
30 codes 257286 for the lengths. Some of the 30 length codes may be missing, so this
parameter indicates how many of the length codes actually exist in the table.

3. A 5-bit parameter HDIST indicating the size of the code table for distances. There
are 30 codes in this table, but some may be missing.
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4. A 4-bit parameter HCLEN indicating the number of CCLs (there may be between
4 and 19 CCLs).

5. A sequence of HCLEN + 4 CCLs, each a 3-bit number.

6. A sequence SQ of HLIT 4 257 CLs for the literal/length code table. This SQ is
compressed as explained earlier.

7. A sequence SQ of HDIST + 1 CLs for the distance code table. This SQ is
compressed as explained earlier.

8. The compressed data, encoded with the two prefix-code tables.

9. The end-of-block code (the prefix code of edoc 256).

Each CCL is written on the output as a 3-bit number, but the CCLs are Huffman
codes of up to 19 symbols. When the Huffman algorithm is applied to a set of 19
symbols, the resulting codes may be up to 18 bits long. It is the responsibility of the
encoder to ensure that each CCL is a 3-bit number and none exceeds 7. The formal
definition [RFC1951 96] of Deflate does not specify how this restriction on the CCLs is
to be achieved.

3.23.3 The Hash Table

This short section discusses the problem of locating a match in the search buffer. The
buffer is 32 Kb long, so a linear search is too slow. Searching linearly for a match to
any string requires an examination of the entire search buffer. If Deflate is to be able to
compress large data files in reasonable time, it should use a sophisticated search method.
The method proposed by the Deflate standard is based on a hash table. This method is
strongly recommended by the standard, but is not required. An encoder using a different
search method is still compliant and can call itself a Deflate encoder. Those unfamiliar
with hash tables should consult any text on data structures.

Instead of separate look-ahead and search buffers, the encoder should have one,
32 Kb buffer. The buffer is filled up with input data and initially all of it is a look-
ahead buffer. In the original LZ77 method, once symbols have been examined, they
are moved into the search buffer. The Deflate encoder, in contrast, does not move the
data in its buffer and instead moves a pointer (or a separator) from left to right, to
indicate the point where the look-ahead buffer ends and the search buffer starts. Short,
3-symbol strings from the look-ahead buffer are hashed and added to the hash table.
After hashing a string, the encoder examines the hash table for matches. Assuming
that a symbol occupies n bits, a string of three symbols can have values in the interval
[0,237 —1]. If 23" — 1 isn’t too large, the hash function can return values in this interval,
which tends to minimize the number of collisions. Otherwise, the hash function can
return values in a smaller interval, such as 32 Kb (the size of the Deflate buffer).

We demonstrate the principles of Deflate hashing with the 17-symbol string

abbaabbaabaabaaaa
12345678901234567

Initially, the entire 17-location buffer is the look-ahead buffer and the hash table is
empty
012345678
[0]ofoJo[olofo]0]...
We assume that the first triplet abb hashes to 7. The encoder outputs the raw
symbol a, moves this symbol to the search buffer (by moving the separator between the
two buffers to the right), and sets cell 7 of the hash table to 1.
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a|bbaabbaabaabaaaa 0123456738
1 2345678901234567 [0]oJofoJofofo]1]...

The next three steps hash the strings bba, baa, and aab to, say, 1, 5, and 0. The
encoder outputs the three raw symbols b, b, and a, moves the separator, and updates
the hash table as follows:

abba|abbaabaabaaaa 0123456738
1234 5678901234567 [4]2]0]0]0[3]0]1]...

Next, the triplet abb is hashed, and we already know that it hashes to 7. The
encoder finds 1 in cell 7 of the hash table, so it looks for a string that starts with abb at
position 1 of its buffer. It finds a match of size 6, so it outputs the pair (5 — 1,6). The
offset (4) is the difference between the start of the current string (5) and the start of
the matching string (1). There are now two strings that start with abb, so cell 7 should
point to both. It therefore becomes the start of a linked list (or chain) whose data items
are 5 and 1. Notice that the 5 precedes the 1 in this chain, so that later searches of
the chain will find the 5 first and will therefore tend to find matches with the smallest
offset, because those have short Huffman codes.

abbaa|bbaabaabaaaa 012345678
12345 678901234567 [4]2]o]olo[3]0] I...

[5] H1lo]

Six symbols have been matched at position 5, so the next position to consider is
6+ 5 = 11. While moving to position 11, the encoder hashes the five 3-symbol strings it
finds along the way (those that start at positions 6 through 10). They are bba, baa, aab,
aba, and baa. They hash to 1, 5, 0, 3, and 5 (we arbitrarily assume that aba hashes to
3). Cell 3 of the hash table is set to 9, and cells 0, 1, and 5 become the starts of linked
chains.

-

abbaabbaablaabaaaa | 0 |

1234567890 1234567 i

—

[0ToToT ToT T..

LA
-+ [5] 1[0

Continuing from position 11, string aab hashes to 0. Following the chain from cell
0, we find matches at positions 4 and 8. The latter match is longer and matches the
5-symbol string aabaa. The encoder outputs the pair (11 — 8,5) and moves to position
11 + 5 = 16. While doing so, it also hashes the 3-symbol strings that start at positions
12, 13, 14, and 15. Each hash value is added to the hash table. (End of example.)

It is clear that the chains can become very long. An example is an image file with
large uniform areas where many 3-symbol strings will be identical, will hash to the same
value, and will be added to the same cell in the hash table. Since a chain must be
searched linearly, a long chain defeats the purpose of a hash table. This is why Deflate
has a parameter that limits the size of a chain. If a chain exceeds this size, its oldest
elements should be truncated. The Deflate standard does not specify how this should
be done and leaves it to the discretion of the implementor. Limiting the size of a chain
reduces the compression quality but can reduce the compression time significantly. In
situations where compression time is unimportant, the user can specify long chains.

Also, selecting the longest match may not always be the best strategy; the offset
should also be taken into account. A 3-symbol match with a small offset may eventually
use fewer bits (once the offset is replaced with a variable-size code) than a 4-symbol
match with a large offset.

c o
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3.23.4 Conclusions

Deflate is a general-purpose lossless compression algorithm that has proved valuable over
the years as part of several popular compression programs. The method requires memory
for the look-ahead and search buffers and for the two prefix-code tables. However, the
memory size needed by the encoder and decoder is independent of the size of the data or
the blocks. The implementation is not trivial, but is simpler than that of some modern
methods such as JPEG 2000 or MPEG. Compression algorithms that are geared for
specific types of data, such as audio or video, may perform better than Deflate on such
data, but Deflate normally produces compression factors of 2.5 to 3 on text, slightly
less for executable files, and somewhat more for images. Most important, even in the
worst case, Deflate expands the data by only 5 bytes per 32 Kb block. Finally, free
implementations that avoid patents are available. Notice that the original method, as
designed by Phil Katz, has been patented (United States patent 5,051,745, September
24, 1991) and assigned to PKWARE.

3.24 LZMA and 7-Zip

LZMA is the main (as well as the default) algorithm used in the popular 7z (or 7-Zip)
compression software [7z 06]. Both 7z and LZMA are the creations of Igor Pavlov. The
software runs on Windows and is free. Both LZMA and 7z were designed to provide
high compression, fast decompression, and low memory requirements for decompression.

The main feature of 7z is its open architecture. The software can currently compress
data in one of six algorithms, and can in principle support any new compression methods.
The current algorithms are the following:

1. LZMA. This is a sophisticated extension of LZ77

PPMD. A variant of Dmitry Shkarin’s PPMdH

BCJ. A converter for 32-bit x86 executables (see note)

BCJ2. A similar converter

BZip2. An implementation of the Burrows-Wheeler method (Section 8.1)
. Deflate. An LZT77-based algorithm (Section 3.23)

(Note: The 80x86 family of processors was originally developed by Intel with a word
length of 16 bits. Because of its tremendous success, its architecture had been extended
to 32-bit words and is currently referred to as TA-32 [Intel Architecture, 32-bit]. See
[TA-32 06] for more information.)

Other important features of 7z are the following:

S o Wi

s In addition to compressing and decompressing data in LZMA, the 7z software can
compress and decompress data in ZIP, GZIP, and BZIP2, it can pack and unpack data
in the TAR format, and it can decompress data originally compressed in RAR, CAB,
ARJ, LZH, CHM, Z, CPIO, RPM, and DEB.

s When compressing data in the ZIP or GZIP formats, 7z provides compression ratios
that are 2-10% better than those achieved by PKZip and WinZip.

= A data file compressed in 7z includes a decompressor; it is self-extracting.
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s The 7z software is integrated with Windows Shell [Horstmann 06].
m It constitutes a powerful file manager.

n It offers a powerful command line version.

= It has a plugin for FAR Manager.

m It includes localizations for 60 languages.

s It can encrypt the compressed data with the advanced encryption standard (AES-
256) algorithm, based on a 256-bit encryption key [FIPS197 01]. (The original AES
algorithm, also known as Rijndael, was based on 128-bit keys.) The user inputs a text
string as a passphrase, and 7z employs a key-derivation function to obtain the 256-
bit key from the passphrase. This function is based on the SHA-256 hash algorithm
[SHA256 02] and it computes the key by generating a very long string based on the
passphrase and using it as the input to the hash function. The 256 bits output by the
hash function become the encryption key.

To generate the string, 7z starts with the passphrase, encoded in the UTF-16 encod-
ing scheme (two bytes per character, see [UTF16 06]). It then generates and concatenates
256K = 2! pairs (passphrase, integer) with 64-bit integers ranging from 0 to 28 — 1.
If the passphrase is p symbols long, then each pair is 2p 4+ 8 bytes long (the bytes are
arranged in little endian), and the total length of the final string is 218(2p + 8) bytes;
very long!

The term Little Endian means that the low-order byte (the little end) of a number
or a string is stored in memory at the lowest address (it comes first). For example,
given the 4-byte number b3bobibg, if the least-significant byte by is stored at address
A, then the most-significant byte bs will be stored at address A + 3.

LZMA (which stands for Lempel-Ziv-Markov chain-Algorithm) is the default com-
pression algorithm of 7z. It is an LZ77 variant designed for high compression ratios
and fast decompression. A free software development kit (SDK) with the LZMA source
code, in C, C++, C#, and Java, is available at [7z 06] to anyone who wants to study,
understand, or modify this algorithm. The main features of LZMA are the following:

s Compression speeds of about 1 Mb/s on a 2 GHz processor. Decompression speeds
of about 10-20 Mb/s are typically obtained on a 2 GHz CPU

= The size of the decompressor can be as little as 2 Kb (if optimized for size of code),
and it requires only 8-32Kb (plus the dictionary size) for its data.

m  The dictionary size is variable and can be up to 4 Gb, but the current implementa-
tion limits it to 1 Gb.

= It supports multithreading and the Pentium 4’s hyperthreading. (Hyperthreading
is a technology that allows resource sharing and partitioning while providing a multi-
processor environment in a unique CPU.) The current LZMA encoder can use one or
two threads, and the LZMA decoder can use only one thread.

s The LZMA decoder uses only integer operations and can easily be implemented on
any 32-bit processor (implementing it on a 16-bit CPU is more involved).
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The compression principle of LZMA is similar to that of Deflate (Section 3.23),
but uses range encoding (Section 2.15.1) instead of Huffman coding. This complicates
the encoder, but results in better compression (recall that range encoding is an integer-
based version of arithmetic coding and can compress very close to the entropy of the
data), while minimizing the number of renormalizations needed. Range encoding is
implemented in binary such that shifts are used to divide integers, thereby avoiding the
slow “divide” operation.

Recall that LZ77 searches the search buffer for the longest string that matches the
look-ahead buffer, then writes on the compressed stream a triplet (distance, length,
next symbol) where “distance” is the distance from the string in the look-ahead buffer
to its match in the search buffer. Thus, three types of data are written on the output,
literals (the next symbol, often an ASCII code), lengths (relatively small numbers), and
distances (which can be large numbers if the search buffer is large).

LZMA also outputs these three types. If nothing matches the look-ahead buffer, a
literal (a value in the interval [0, 255]) is output. If a match is found, then a pair (length,
distance) is output (after being encoded by the range coder). Because of the large size
of the search buffer, a short, 4-entry, distance-history array is used that always contains
the four most-recent distances that have been determined and output. If the distance
of the current match equals one of the four distances in this array, then a pair (length,
index) is output (after being encoded by the range coder), where “index” is a 2-bit index
to the distance-history array.

Locating matches in the search buffer is done by hashing two bytes, the current
byte in the look-ahead buffer and the byte immediately to its right (but see the next
paragraph for more details). The output of the hash function is an index to an array
(the hash-array). The size of the array is selected as the power of 2 that’s closest to
half the dictionary size, so the output of the hash function depends on the size of the
dictionary. For example, if the dictionary size is 256 Mb (or 228), then the size of the
array is 227 and the hash function has to compute and output 27-bit numbers. The large
size of the array minimizes hash collisions.

Experienced readers may have noticed the problem with the previous paragraph. If
only two bytes are hashed, then the input to the hash function is only 16 bits, so there
can be only 2'6 = 65,536 different inputs. The hash function can therefore compute
only 65,536 distinct outputs (indexes to the hash-array) regardless of the size of the
array. The full story is therefore more complex. The LZMA encoder can hash 2, 3, or 4
bytes and the number of items in the hash-array is selected by the encoder depending
on the size of the dictionary. For example, a 1-Gb (= 23Y bytes) dictionary results in
a hash-array of size 512M = 229 items (where each item in the hash-array is a 32-bit
integer). In order to take advantage of such a large hash-array, the encoder hashes four
bytes. Four bytes constitute 32 bits, which provide the hash function with 232 distinct
inputs. The hash function converts each input to a 29-bit index. (Thus, many inputs
are converted to the same index.)

Table 3.38 lists several user options and shows how the user can control the encoder
by setting the Match Finder parameter to certain values. The value bt4, for example,
specifies the binary tree mode with 2-3-4 bytes hashing. For simplicity, the remainder
of this description talks about hashing two bytes (see Table 3.38 for various hashing
options).
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The output of the hash function is used as an index to a hash-array and the user
can choose one of two search methods, hash-chain (the fast method) or binary tree (the
efficient method).

In the fast method, the output of the hash function is an index to a hash-array of
lists. Each array location is the start of a list of distances. Thus, if the two bytes hashed
are XY and the result of the hash is index 123, then location 123 of the hash-array is a
list of distances to pairs XY in the search buffer. These lists can be very long, so LZMA
checks only the first 24 distances. These correspond to the 24 most-recent occurrences
of XY (the number 24 is a user-controlled parameter). The best of the 24 matches is
selected, encoded, and output. The distance of this match is then added to the start of
the list, to become the first match found when array location 123 is checked again. This
method is reminiscent of match searching in LZRW4 (Section 3.11).

In the binary tree method, the output of the hash function is an index to a hash-
array of binary search trees (Section 3.4). Initially, the hash-array is empty and there
are no trees. As data is read and encoded, trees are generated and grow, and each
data byte becomes a node in one of the trees. A binary tree is created for every pair of
consecutive bytes in the original data. Thus, if the data contains good,day, then trees
are generated for the pairs go, oo, od, d, ud, da, and ay. The total number of nodes in
those trees is eight (the size of the data). Notice that the two occurrences of o end up
as nodes in different trees. The first resides in the tree for oo, and the second ends up
in the tree of od.

The following example illustrates how this method employs the binary trees to find
matches and how the trees are unpdated. The example assumes that the match-finder
parameter (Table 3.38) is set to bt2, indicating 2-byte hashing.

We assume that the data to be encoded is already fully stored in a long buffer (the
dictionary). Five strings that start with the pair ab are located at various points as

shown

..abm...abcd2...abcx...abcdl.. .aby...

1 2 3 5 7
1 4 0 7 8

We denote by p(n) the index (location) of string n in the dictionary. Thus, p(abm. . .)
is 11 and p(abcd2) is 24. Each time a binary tree T is searched and a match is selected,
T is rearranged and is updated according to the following two rules:

1. The tree must always remain a binary search tree.

2. If p(nl1) < p(n2), then n2 cannot be in any subtree of n1. This implies that (a)
the latest string (the one with the greatest index) is always the root of the tree and (b)
indexes decrease as we slide down the tree. The result is a tree where recent strings are
located near the root.

We also assume that the pair ab of bytes is hashed to 62. Figure 3.37 illustrates how
the binary tree for the pair ab is created, kept up to date, and searched. The following
numbered items refer to the six parts of this figure.

1. When the LZMA encoder gets to location 11 and finds a, it hashes this byte and
the b that follows, to obtain 62. It examines location 62 of the hash-array and finds it
empty. It then generates a new binary tree (for the pair ab) with one node containing
the pointer 11, and sets location 62 of the hash-array to point to this tree. There is no



3.24 LZMA and 7-Zip 245

match, the byte a at 11 is output as a literal, and the encoder proceeds to hash the next
pair bm.

2. The next pair ab is found by the LZMA encoder when it gets to location 24.
Hashing produces the same 62, and location 62 of the hash-array is found to point to a
binary tree whose root (which is so far its only node) contains 11. The encoder places 24
as the new root with 11 as its right subtree, because abcd2. .. is smaller than abm. ..
(strings are compared lexicographically). The encoder matches abcd2. .. with abm. ..
and the match length is 2. The encoder continues with cd2. .., but before it does that,
it hashes the pair bc and either appends it to the binary tree for be (if such a tree exists)
or generates a new tree.

3. The next pair ab is found at location 30. Hashing produces the same 62. The
encoder places 30 (abex. . .) as the new root with 24 (abcd2...) as its left subtree and
11 (abm..) as its right subtree. The better match is abcd2. .., and the match length
is 3. The next two pairs bc and cx are appended to their respective trees (if such trees
exist), and the encoder continues with the pair x..

4. The next occurrence of ab is found at location 57 and is hashed to 62. It becomes
the root of the tree, with 30 (abcx...) as its right subtree. The best match is with
abcd2... where the match length is 4. The encoder continues with the string 1...
found at location 61.

5. In the last step of this example, the encoder finds a pair ab at location 78. This
string (aby...) becomes the new root, with 57 as its left subtree. The match length is
2.

6. Now assume that location 78 contains the string abk.. instead of aby... Since
abm.. is greater than abk. ., it must be moved to the right subtree of abk. ., resulting
in a completely different tree.

62 62 62 62

S S s S S

@abm_. (24) abeaz. . @abcdl.. aby._ abk”
abm..@ @ abcx. abcdl.. @ @

abcd2.. abm.. @ abcx. .
abcd2.. abm.. @abm..

(1) (2) (3) (4) (5) (6)

Figure 3.37: Binary Search Trees in LZMA.

Past versions of LZMA used a data structure called a Patricia trie (see page 191 for
the definition of a trie), but this structure proved inefficient and has been eliminated.

We end this description with some of the options that can be specified by the user
when LZMA is invoked.

»  -a{N}. The compression mode. 0, 1, and 2 specify the fast, normal, and max
modes, with 2 as the default. (The latest version, currently in its beta stage, does not
support the max mode.)
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s -d{N}. The Dictionary size. N is an integer between 0 and 30, and the dictionary
size is set to 2. The default is N = 23 (an 8-Mb dictionary), and the current maximum
is N =30 (a 1-Gb dictionary).

s -mf{MF_ID}. The Match Finder. It specifies the method for finding matches and
limits the number of bytes to be hashed. The memory requirements depend on this
choice and on the dictionary size d. Table 3.38 lists the choices. The default value of
MF_ID in the normal, max, and ultra modes is bt4 and in the fast and fastest modes it
is hc4.

MF_ID Memory Description

bt2 dx9.54+1Mb  Binary Tree with 2 bytes hashing
bt3 dx11.5+4 Mb Binary Tree with 3 bytes hashing
bt4 dx11.5+4 Mb Binary Tree with 4 bytes hashing
hc4 dx75+4Mb  Hash Chain with 4 bytes hashing

Table 3.38: LZMA Match Finder Options.

Notes for Table 3.38:

1. bt4 uses three hash tables with 2!0 items for hashing two bytes, with 2'6 items
for hashing three bytes, and with a variable size to hash four bytes. Only the latter
table points to binary trees. The other tables point to positions in the input buffer.

2. bt3 uses two hash tables, one with 20 items for hashing two bytes and the other
with a variable size to hash three bytes

3. bt2 uses only one hash table with 2!¢ items.

4. bt2 and bt3 also can find almost all the matches, but bt4 is faster.

The author would like to thank Igor Pavlov for contributing important information
and details to the material of this section.

3.25 PNG

The portable network graphics (PNG) file format has been developed in the mid-1990s
by a group (the PNG development group [PNG 03]) headed by Thomas Boutell. The
project was started in response to the legal issues surrounding the GIF file format
(Section 3.19). The aim of this project was to develop a sophisticated graphics file
format that will be flexible, will support many different types of images, will be easy
to transmit over the Internet, and will be unencumbered by patents. The design was
finalized in October 1996, and its main features are as follows:

1. Tt supports images with 1, 2, 4, 8, and 16 bitplanes.

2. Sophisticated color matching.

3. A transparency feature with very fine control provided by an alpha channel.

4. Lossless compression by means of Deflate combined with pixel prediction.

5. Extensibility: New types of meta-information can be added to an image file
without creating incompatibility with existing applications.
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Currently, PNG is supported by many image viewers and web browsers on various
platforms. This subsection is a general description of the PNG format, followed by the
details of the compression method it uses.

A PNG file consists of chunks that can be of various types and sizes. Some chunks
contain information that’s essential for displaying the image, and decoders must be able
to recognize and process them. Such chunks are referred to as “critical chunks.” Other
chunks are ancillary. They may enhance the display of the image or may contain meta-
data such as the image title, author’s name, creation and modification dates and times,
etc. (but notice that decoders may choose not to process such chunks). New, useful
types of chunks can also be registered with the PNG development group.

A chunk consists of the following parts: (1) size of the data field, (2) chunk name,
(3) data field, and (4) a 32-bit cyclical redundancy code (CRC, Section 3.28). Each
chunk has a 4-letter name of which (1) the first letter is uppercase for a critical chunk
and lowercase for an ancillary chunk, (2) the second letter is uppercase for standard
chunks (those defined by or registered with the PNG group) and lowercase for a private
chunk (an extension of PNG), (3) the third letter is always uppercase, and (4) the fourth
letter is uppercase if the chunk is “unsafe to copy” and lowercase if it is “safe to copy.”

Any PNG-aware application will process all the chunks it recognizes. It can safely
ignore any ancillary chunk it doesn’t recognize, but if it finds a critical chunk it cannot
recognize, it has to stop and issue an error message. If a chunk cannot be recognized but
its name indicates that it is safe to copy, the application may safely read and rewrite it
even if it has altered the image. However, if the application cannot recognize an “unsafe
to copy” chunk, it must discard it. Such a chunk should not be rewritten on the new
PNG file. Examples of “safe to copy” are chunks with text comments or those indicating
the physical size of a pixel. Examples of “unsafe to copy” are chunks with gamma/color
correction data or palette histograms.

The four critical chunks defined by the PNG standard are ITHDR (the image header),
PLTE (the color palette), IDAT (the image data, as a compressed sequence of filtered
samples), and IEND (the image trailer). The standard also defines several ancillary
chunks that are deemed to be of general interest. Anyone with a new chunk that may
also be of general interest may register it with the PNG development group and have it
assigned a public name (a second letter in uppercase).

The PNG file format uses a 32-bit CRC (Section 3.28) as defined by the ISO stan-
dard 3309 [ISO 84] or ITU-T V.42 [ITU-T 94]. The CRC polynomial is

$32+J}26+.’E23+$22+J)16+l‘12+J}11+Z‘10+$8+1‘7+$5+.’E4+$2+Z‘+1.

The particular calculation proposed in the PNG standard employs a precalculated table
that speeds up the computation significantly.

A PNG file starts with an 8-byte signature that helps software to identify it as PNG.
This is immediately followed by an ITHDR chunk with the image dimensions, number of
bitplanes, color type, and data filtering and interlacing. The remaining chunks must
include a PLTE chunk if the color type is palette, and one or more adjacent IDAT
chunks with the compressed pixels. The file must end with an IEND chunk. The PNG
standard defines the order of the public chunks, whereas private chunks may have their
own ordering constraints.
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An image in PNG format may have one of the following five color types: RGB with
8 or 16 bitplanes, palette with 1, 2, 4, or 8 bitplanes, grayscale with 1, 2, 4, 8, or 16
bitplanes, RGB with alpha channel (with 8 or 16 bitplanes), and grayscale with alpha
channel (also with 8 or 16 bitplanes). An alpha channel implements the concept of
transparent color. One color can be designated transparent, and pixels of that color are
not drawn on the screen (or printed). Instead of seeing those pixels, a viewer sees the
background behind the image. The alpha channel is a number in the interval [0, 27 — 1],
where bp is the number of bitplanes. Assuming that the background color is B, a pixel
in the transparent color P is painted in color (1 — «)B + aP. This is a mixture of a%
background color and (1 — «)% pixel color.

Perhaps the most intriguing feature of the PNG format is the way it handles in-
terlacing. Interlacing makes it possible to display a rough version of the image on the
screen, then improve it gradually until it reaches its final, high-resolution form. The
special interlacing used in PNG is called Adam 7 after its developer, Adam M. Costello.
PNG divides the image into blocks of 8 x 8 pixels each, and displays each block in seven
steps. In step 1, the entire block is filled up with copies of the top-left pixel (the one
marked “1” in Figure 3.39a). In each subsequent step, the block’s resolution is doubled
by modifying half its pixels according to the next number in Figure 3.39a. This process
is easiest to understand with an example, such as the one shown in Figure 3.39b.

PNG compression is lossless and is performed in two steps. The first step, termed
delta filtering (or just filtering), converts pixel values to numbers by a process similar
to the prediction used in the lossless mode of JPEG (Section 4.8.5). The filtering step
calculates a “predicted” value for each pixel and replaces the pixel with the difference
between the pixel and its predicted value. The second step employs Deflate to encode
the differences. Deflate is the topic of Section 3.23, so only filtering needs be described
here.

Filtering does not compress the data. It only transforms the pixel data to a format
where it is more compressible. Filtering is done separately on each image row, so an
intelligent encoder can switch filters from one image row to the next (this is called adap-
tive filtering). PNG specifies five filtering methods (the first one is simply no filtering)
and recommends a simple heuristic for choosing a filtering method for each image row.
Each row starts with a byte indicating the filtering method used in it. Filtering is done
on bytes, not on complete pixel values. This is easy to understand in cases where a pixel
consists of three bytes, specifying the three color components of the pixel. Denoting the
three bytes by a, b, and ¢, we can expect a; and a;+1 to be correlated (and also b; and
bi+1, and ¢; and ¢;41), but there is no correlation between a; and b;. Also, in a grayscale
image with 16-bit pixels, it makes sense to compare the most-significant bytes of two
adjacent pixels and then the least-significant bytes. Experiments suggest that filtering
is ineffective for images with fewer than eight bitplanes, and also for palette images, so
PNG recommends no filtering in such cases.

The heuristic recommended by PNG for adaptive filtering is to apply all five filtering
types to the row of pixels and select the type that produces the smallest sum of absolute
values of outputs. (For the purposes of this test, the filtered bytes should be considered
signed differences.)

The five filtering types are described next. The first type (type 0) is no filtering.
Filtering type 1 (sub) sets byte B; ; in row ¢ and column j to the difference B; ; — B;_; ;,
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Figure 3.39: Interlacing in PNG.

where ¢ is the interval between a byte and its correlated predecessor (the number of bytes
in a pixel). Values of ¢ for the various image types and bitplanes are listed in Table 3.40.
If i — t is negative, then nothing is subtracted, which is equivalent to having a zero pixel
on the left of the row. The subtraction is done modulo 256, and the bytes subtracted
are considered unsigned.

Filtering type 2 (up) sets byte B; ; to the difference B; ; — B; j_1. The subtraction
is done as in type 1, but if j is the top image row, no subtraction is done.

Filtering type 3 (average) sets byte B ; to the difference B; j — [Bi_;j+ B; j—1] +2.
The average of the left neighbor and the top neighbor is computed and subtracted from
the byte. Any missing neighbor to the left or above is considered zero. Notice that the
sum B;_; ; + B; j_1 may be up to 9 bits long. To guarantee that the filtering is lossless
and can be reversed by the decoder, the sum must be computed exactly. The division by
2 is equivalent to a right shift and brings the 9-bit sum down to 8 bits. Following that,
the 8-bit average is subtracted from the current byte B; ; modulo 256 and unsigned.
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Image Bit Interval

type planes t
Grayscale 1,2,4,8 1
Grayscale 16 2
Grayscale with alpha 8 2
Grayscale with alpha 16 4
Palette 1,2,4,8 1
RGB 8 3
RGB 16 6
RGB with alpha 8 4
RGB with alpha 16 8

Figure 3.40: Interval Between Bytes.

Example. Assume that the current byte B; ; = 112, its left neighbor B;_; ; = 182,
and its top neighbor B; ;1 = 195. The average is (182 + 195) <+ 2 = 188. Subtracting
(112 —188) mod 256 yields —76 mod 256 or 256 — 76 = 180. Thus, the encoder sets B; ;
to 180. The decoder inputs the value 180 for the current byte, computes the average
in the same way as the encoder to end up with 188, and adds (180 + 188) mod 256 to
obtain 112.

Filtering type 4 (Paeth) sets byte B; ; to B; j—PaethPredict [Bi,t)j, B, -1, Bi,t)j,l] )
PaethPredict is a function that uses simple rules to select one of its three parameters,
then returns that parameter. Those parameters are the left, top, and top-left neighbors.
The selected neighbor is then subtracted from the current byte, modulo 256 unsigned.
The PaethPredictor function is defined by the following pseudocode:

function PaethPredictor (a, b, c)
begin

; a=left, b=above, c=upper left
p:=atb-c ;initial estimate

pa := abs(p-a) ; compute distances
pb := abs(p-b) ; to a, b, c
pc := abs(p-c)

; return nearest of a,b,c,

; breaking ties in order a,b,c.

if pa<=pb AND pa<=pc then return a
else if pb<=pc then return b

else return c

end

PaethPredictor must perform its computations exactly, without overflow. The order
in which PaethPredictor breaks ties is important and should not be altered. This order
(that’s different from the one given in [Paeth 91]) is left neighbor, neighbor above,
upper-left neighbor.

PNG is a single-image format, but the PNG development group has also designed
an animated companion format named MNG (multiple-image network format), which
is a proper superset of PNG.
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The author is indebted to Cosmin Truta for reviewing and correcting this subsection.

Does the world really need yet another graphics format? We believe so. GIF is no
longer freely usable,. . . it would not be all that much easier to implement than a whole
new file format. (PNG is designed to be simple to implement, with the exception of
the compression engine, which would be needed in any case.) We feel that this is an
excellent opportunity to design a new format that fixes some of the known limitations
of GIF.

From the PNG standard, RFC 2083, 1999

3.26 XML Compression: XMill

XMill is a special-purpose, efficient software application for the compression of XML
(Extensible Markup Language) documents. Its description in this short section is based
on [Liefke and Suciu 99], but more details and a free implementation are available from
[XMill 03]. First, a few words about XML.

XML is a markup language for documents containing structured information. A
markup language is a mechanism to identify structures in a document. A short story
or a novel may have very little structure. It may be divided into chapters and may
also include footnotes, an introduction, and an epilogue. A cooking recipe has more
structure. It starts with the name of the dish and its class (such as salads, soups, etc.).
This is followed by the two main structural items: the ingredients and the preparation.
The recipe may then describe the proper way to serve the dish and may end with notes,
reviews, and comments. A business card is similarly divided into a number of short
items.

The XML standard [XML 03] defines a way to add markup to documents, and has
proven very popular and successful. An XML file contains data represented as text and
also includes tags that identify the types of (or that assign meaning to) various data
items. HTML is also a markup language, familiar to many, but it is restrictive in that
it defines only certain tags and their meanings. The <H3> tag, for example, is defined in
HTML and has a certain meaning (a certain header), but anyone wanting to use a tag
of, say, <blah>, has first to convince the WWW consortium to define it and assign it a
meaning, then wait for the various web browsers to support it. XML, in contrast, does
not specify a set of tags but provides a facility to define tags and structural relationships
between them. The meaning of the tags (their semantics) is later defined by applications
that process XML documents or by style sheets.

Here is a simple example of a business card in XML. Most tags specify the start and
end of a certain data item; they are wrappers. A tag such as <red_backgrnd/> that has
a trailing “/” is considered empty. It specifies something to the application that reads
and processes the XML file, but that something does not require any extra data.

<card xmlns="http://businesscard.org">
<name>Melvin Schwartzkopf</name>
<title>Chief person, Monster Inc.</title>
<email>mschwa®monster.com</email>
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<phone>(212)555-1414</phone>
<logo url="widget.gif"/>
<red_backgrnd/>

</card>

In summary, an XML file consists of markup and content. There are six types of
markup that can occur in an XML document: elements, entity references, comments,
processing instructions, marked sections, and document-type declarations. The contents
can be any digital data.

The main aim of the developers of XMill was to design and implement a special-
purpose XML encoder that will compress an XML file better than a typical compressor
will compress just the data of that file. Given a data file A, suppose that a typical
compressor, such as gzip, compresses it to X. Now add XML tags to A, converting it to
B and increasing its size in the process. When B is compressed by XMill, the resulting
file, Y, should be smaller than X. As an example, the developers had tested XMill on
a 98-Mb data file taken from SwissProt, a data base for protein structure. The file was
initially compressed by gzip down to 16 Mb. The original file was then converted to
XML which increased its size to 165 Mb and was compressed by gzip (to 19 Mb) and
by XMill (to 8.6 Mb, albeit after fine-tuning XMill for the specific data in that file).
However, since XMill is a special-purpose encoder, it is not expected to perform well on
arbitrary data files. The design of XMill is based on the following principles:

1. By itself, XMill is not a compressor. Rather, it is an extensible tool for specifying
and applying existing compressors to XML data items. XMill analyzes the XML file,
then invokes different compressors to compress different parts of the file. The main
compressor used by XMill is gzip, but XMill includes other compressors and can also be
linked by the user to any existing compressor.

2. Separate the structure from the raw data. The XML tags and attributes are
separated by XMill from the data in the input file and are compressed separately. The
data is the contents of XML elements and the values of attributes.

3. Group together items that are related. XMill uses the concept of a container.
In the above example of business cards, all the URLs are grouped in one container, all
the names are grouped in a second container, and so on. Also, all the XML tags and
attributes are grouped in the structure container. The user can control the contents of
the container by providing container expressions on the XMill command line.

4. Use semantic compressors. A container may include data items of a certain
type, such as telephone numbers or airport codes. A sophisticated user may have an
encoder that compresses such items efficiently. The user may therefore direct XMill to
use certain encoders for certain containers, thereby achieving excellent compression for
the entire XML input file. XMill comes with several built-in encoders, but any encoder
available to the user may be linked to XMill and will be used by it to compress any
specified container.

An important part of XMill is a concise language, termed the container expressions,
that’s used to group data items in containers and to specify the proper encoders for the
various containers.

XMill was designed to prepare XML files for storage or transmission. Sometimes, an
XML file is used in connection with a query processor, where the file has to be searched
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often. XMill is not a good choice for such an application. Another limitation of XMill is
that it performs well only on large files. Any XML file smaller than about 20 Kb will be
poorly compressed by XMill because XMill adds overhead in the form of bookkeeping to
the compressed file. Small XML files, however, are common in situations where messages
in XML format are exchanged between users or between applications.

I do not know it—it is without name—it is a word
unsaid, It is not in any dictionary, utterance, symbol.

—Walt Whitman, Leaves of Grass, (1900)

3.27 EXE Compressors

The LZEXE program is freeware originally written in the late 1980s by Fabrice Bellard
as a special-purpose utility to compress EXE files (PC executable files). The idea is
that an EXE file compressed by LZEXE can be decompressed and executed with one
command. The decompressor does not write the decompressed file on the disk but loads
it in memory, relocates addresses, and executes it! The decompressor uses memory
that’s eventually used by the program being decompressed, so it does not require any
extra RAM. In addition, the decompressor is very small compared with decompressors
in self-extracting archives.

The algorithm is based on LZ. It uses a circular queue and a dictionary tree for
finding string matches. The position and size of the match are encoded by an auxiliary
algorithm based on the Huffman method. Uncompressed bytes are kept unchanged,
since trying to compress them any further would have entailed a much more complex
and larger decompressor. The decompressor is located at the end of the compressed
EXE file and is 330 bytes long (in version 0.91). The main steps of the decoder are as
follows:

1. Check the CRC (Section 3.28) to ensure data reliability.

2. Locate itself in high RAM; then move the compressed code in order to leave sufficient
room for the EXE file.

3. Decompress the code, check that it is correct, and adjust the segments if bigger than
64K.

4. Decompress the relocation table and update the relocatable addresses of the EXE
file.

5. Run the program, updating the CS, IP, SS, and SP registers.

The idea of EXE compressors, introduced by LZEXE, was attractive to both users
and software developers, so a few more have been developed:

1. PKlite, from PKWare, is a similar EXE compressor that can also compress .COM
files.

2. DIET, by Teddy Matsumoto, is a more general EXE compressor that can compress
data files. DIET can act as a monitor, permanently residing in RAM, watching for
applications trying to read files from the disk. When an application tries to read a
DIET-compressed data file, DIET senses it and does the reading and decompressing in
a process that’s transparent to the application.
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UPX is an EXE compressor started in 1996 by Markus Oberhumer and Laszlé
Molndr. The current version (as of June 2006) is 2.01. Here is a short quotation from
[UPX 03].

UPX is a free, portable, extendable, high-performance executable packer for several
different executable formats. It achieves an excellent compression ratio and offers very
fast decompression. Your executables suffer no memory overhead or other drawbacks.

3.28 CRC

The idea of a parity bit is simple, old, and familiar to most computer practitioners. A
parity bit is the simplest type of error detecting code. It adds reliability to a group of
bits by making it possible for hardware to detect certain errors that may occur when the
group is stored in memory, is written on a disk, or is transmitted over communication
lines between computers. A single parity bit does not make the group completely reliable.
There are certain errors that cannot be detected with a parity bit, but experience shows
that even a single parity bit can make data transmission reliable in most practical cases.

The parity bit is computed from a group of n — 1 bits, then added to the group,
making it n bits long. A common example is a 7-bit ASCII code that becomes 8 bits
long after a parity bit is added. The parity bit p is computed by counting the number of
1’s in the original group, and setting p to complete that number to either odd or even.
The former is called odd parity, and the latter is called even parity.

Examples: Given the group of 7 bits 1010111, the number of 1’s is five, which is
odd. Assuming odd parity, the value of p should be 0, leaving the total number of 1’s
odd. Similarly, the group 1010101 has four 1’s, so its odd parity bit should also be a 1,
bringing the total number of 1’s to five.

Imagine a block of data where the most significant bit (MSB) of each byte is an
odd parity bit, and the bytes are written vertically (Table 3.41a).

1 01101001 1 01101001 1 01101001 1 01101001
0 00001011 0 00001011 0 00001011 0 00001011
0 11110010 0 11010010 0 11010110 0 11010110
0 01101110 0 01101110 0 01101110 0 01101110
1 11101101 1 11101101 1 11101101 1 11101101
1 01001110 1 01001110 1 01001110 1 01001110
0 11101001 0 11101001 0 11101001 0 11101001
1 11010111 111010111 1 11010111 1 11010111

0 00011100

(a) (b) (©) (d)

Table 3.41: Horizontal and Vertical Parities.

When this block is read from a disk or is received by a computer, it may contain
transmission errors, errors that have been caused by imperfect hardware or by electrical
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interference during transmission. We can think of the parity bits as horizontal reliability.
When the block is read, the hardware can check every byte, verifying the parity. This
is done by simply counting the number of 1’s in the byte. If this number is odd, the
hardware assumes that the byte is good. This assumption is not always correct, since
two bits may get corrupted during transmission (Table 3.41c). A single parity bit is
therefore useful (Table 3.41b) but does not provide full error detection capability.

A simple way to increase the reliability of a block of data is to compute vertical
parities. The block is considered to be eight vertical columns, and an odd parity bit is
computed for each column (Table 3.41d). If two bits in a byte go bad, the horizontal
parity will not catch it, but two of the vertical ones will. Even the vertical bits do not
provide complete error detection capability, but they are a simple way to significantly
improve data reliability.

A CRC is a glorified vertical parity. CRC stands for Cyclical Redundancy Check
(or Cyclical Redundancy Code) and is a rule that shows how to compute the vertical
check bits (they are now called check bits, not just simple parity bits) from all the bits
of the data. Here is how CRC-32 (one of the many standards developed by the CCITT)
is computed. The block of data is written as one long binary number. In our example
this will be the 64-bit number

101101001|000001011]011110010]001101110(111101101|101001110[011101001|111010111.

The individual bits are considered the coefficients of a polynomial (see below for
definition). In our example, this will be the degree-63 polynomial

Pa)=1xz®+0xa2”+1x2 +1xa2%+ - +1x2? +1xa' +1x2a°
03 4 g6 60 a2

This polynomial is then divided by the standard CRC-32 generating polynomial
CRC30(z) = 232+ 2% 4+ 22 422 4 216 4 212 4 11 4 210 4 08 10T 4 o5 1oty o 4ol 41

When an integer M is divided by an integer N, the result is a quotient @) (which we
will ignore) and a remainder R, which is in the interval [0, N — 1]. Similarly, when a
polynomial P(z) is divided by a degree-32 polynomial, the result is two polynomials, a
quotient and a remainder. The remainder is a degree-31 polynomial, which means that
it has 32 coefficients, each a single bit. Those 32 bits are the CRC-32 code, which is
appended to the block of data as four bytes. As an example, the CRC-32 of a recent
version of the file with the text of this chapter is 586DE4FE .

The CRC is sometimes called the “fingerprint” of the file. Of course, since it is a
32-bit number, there are only 232 different CRCs. This number equals approximately
4.3 billion, so, in theory, there may be different files with the same CRC, but in practice
this is rare. The CRC is useful as an error detecting-code because it has the following
properties:

1. Every bit in the data block is used to compute the CRC. This means that changing
even one bit may produce a different CRC.

2. Even small changes in the data normally produce very different CRCs. Experience
with CRC-32 shows that it is very rare that introducing errors in the data does not
modify the CRC.
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3. Any histogram of CRC-32 values for different data blocks is flat (or very close to flat).
For a given data block, the probability of any of the 232 possible CRCs being produced
is practically the same.

Other common generating polynomials are CRCyo(z) = 2'2 + 2% + 2 + 1 and
CRCi6(7) = 216 + 21 + 22 + 1. They generate the common CRC-12 and CRC-16
codes, which are 12 and 16 bits long, respectively.

Definition: A polynomial of degree n in x is the function

n
; 2
P,(x) = E a; " = ag +a1T + asx” + - + a,T”,
i=0

where a; are the n + 1 coefficients (in our case, real numbers).
Two simple, readable references on CRC are [Ramabadran and Gaitonde 88] and
[Williams 93].

3.29 Summary

The dictionary-based methods presented here are different but are based on the same
principle. They read the input stream symbol by symbol and add phrases to the dictio-
nary. The phrases are symbols or strings of symbols from the input. The main difference
between the methods is in deciding what phrases to add to the dictionary. When a string
in the input stream matches a dictionary phrase, the encoder outputs the position of the
match in the dictionary. If that position requires fewer bits than the matched string,
compression results.

In general, dictionary-based methods, when carefully implemented, give better com-
pression than statistical methods. This is why many popular compression programs are
dictionary based or employ a dictionary as one of several compression steps.

3.30 Data Compression Patents

It is generally agreed that an invention or a process is patentable but a mathematical
concept, calculation, or proof is not. An algorithm seems to be an abstract mathematical
concept that should not be patentable. However, once the algorithm is implemented in
software (or in firmware) it may not be possible to separate the algorithm from its imple-
mentation. Once the implementation is used in a new product (i.e., an invention), that
product—including the implementation (software or firmware) and the algorithm be-
hind it—may be patentable. [Zalta 88] is a general discussion of algorithm patentability.
Several common data compression algorithms, most notably LZW, have been patented;
and the LZW patent is discussed here in some detail.

The Sperry Corporation was granted a patent (4,558,302) on LZW in December
1985 (even though the inventor, Terry Welch, left Sperry prior to that date). When
Unisys acquired Sperry in 1986 it became the owner of this patent and is still requiring
users to obtain (and pay for) a license to use it.
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When CompuServe designed the GIF format in 1987 it decided to use LZW as the
compression method for GIF files. It seems that CompuServe was not aware at that
point that LZW was patented, nor was Unisys aware that the GIF format uses LZW.
After 1987 many software developers became attracted to GIF and published programs
to create and display images in this format. It became widely accepted and is now
commonly used on the World-Wide Web, where it is one of the prime image formats for
Web pages and browsers.

It was not until GIF had become a world-wide de facto standard that Unisys con-
tacted CompuServe for a license. Naturally, CompuServe and other LZW users tried
to challenge the patent. They applied to the United States Patent Office for a reex-
amination of the LZW patent, with the (perhaps surprising) result that on January
4, 1994, the patent was reconfirmed and CompuServe had to obtain a license (for an
undisclosed sum) from Unisys later that year. Other important licensees of LZW (see
[Rodriguez 95]) are Aldus (in 1991, for the TIFF graphics file format), Adobe (in 1990,
for PostScript level II), and America Online and Prodigy (in 1995).

The Unisys LZW patent has significant implications for the World-Wide Web, where
use of GIF format images is currently widespread. Similarly, the Unix compress utility
uses LZW and therefore requires a license. In the United States, the patent expired on
20 June 2003 (20 years from the date of first filing). In Europe (patent EP0129439)
expired on 18 June 2004. In Japan, patents 2,123,602 and 2,610,084 expired on 20 June
2004, and in Canada, patent CA1223965 expired on 7 July 2004.

Unisys currently exempts old software products (those written or modified before
January 1, 1995) from a patent license. Also exempt is any noncommercial and nonprofit
software, old and new. Commercial software (even shareware) or firmware created after
December 31, 1994, needs to be licensed if it supports the GIF format or implements
LZW. A similar policy is enforced with regard to TIFF, where the cutoff date is July 1,
1995. Notice that computer users may legally keep and transfer GIF and any other files
compressed with LZW:; only the compression/decompression software requires a license.

For more information on the Unisys LZW patent and license see [unisys 03].

An alternative to GIF is the Portable Network Graphics, PNG (pronounced “ping,”
Section 3.25) graphics file format [Crocker 95], which was developed expressly to replace
GIF, and avoid patent claims. PNG is simple, portable, with source code freely available,
and is unencumbered by patent licenses. It has potential and promise in replacing GIF.
However, any GIF-to-PNG conversion software still requires a Unisys license.

The GNU gzip compression software (Section 3.18) should also be mentioned here
as a popular substitute for compress, since it is free from patent claims, is faster, and
provides superior compression.

The LZW U.S. patent number is 4,558,302, issued on Dec. 10, 1985. Here is the
abstract filed as part of it (the entire filing constitutes 50 pages).

A data compressor compresses an input stream of data character signals
by storing in a string table strings of data character signals encountered in
the input stream. The compressor searches the input stream to determine
the longest match to a stored string. Each stored string comprises a prefix
string and an extension character where the extension character is the last
character in the string and the prefix string comprises all but the extension
character. Each string has a code signal associated therewith and a string is
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stored in the string table by, at least implicitly, storing the code signal for the
string, the code signal for the string prefix and the extension character. When
the longest match between the input data character stream and the stored
strings is determined, the code signal for the longest match is transmitted as
the compressed code signal for the encountered string of characters and an
extension string is stored in the string table. The prefix of the extended string
is the longest match and the extension character of the extended string is the
next input data character signal following the longest match. Searching through
the string table and entering extended strings therein is effected by a limited
search hashing procedure. Decompression is effected by a decompressor that
receives the compressed code signals and generates a string table similar to that
constructed by the compressor to effect lookup of received code signals so as to
recover the data character signals comprising a stored string. The decompressor
string table is updated by storing a string having a prefix in accordance with
a prior received code signal and an extension character in accordance with the
first character of the currently recovered string.
Here are a few other patented compression methods, some of them mentioned else-
where in this book:
1. “Textual Substitution Data Compression with Finite Length Search Windows,”
U.S. Patent 4,906,991, issued March 6, 1990 (the LZFG method).
2. “Search Tree Data Structure Encoding for Textual Substitution Data Compression
Systems,” U.S. Patent 5,058,144, issued Oct. 15, 1991.
The two patents above were issued to Edward Fiala and Daniel Greene.
3. “Apparatus and Method for Compressing Data Signals and Restoring the Compressed
Data Signals.” This is the LZ78 patent, assigned to Sperry Corporation by the inventors
Willard L. Eastman, Abraham Lempel, Jacob Ziv, and Martin Cohn. U.S. Patent
4,464,650, issued August, 1984.
The following, from Ross Williams http://www.ross.net/compression/ illustrates
how thorny this issue of patents is.
Then, just when I thought all hope was gone, along came some software patents
that drove a stake through the heart of the LZRW algorithms by rendering them
unusable. At last I was cured! I gave up compression and embarked on a new
life, leaving behind the world of data compression forever.
Appropriately, Dr Williams maintains a list [patents 06] of data compression-related
patents.

Your patent application will be denied. Your permits will be delayed. Something will
force you to see reason-and to sell your drug at a lower cost.

Wu had heard the argument before. And he knew Hammond was right, some new bio-
engineered pharmaceuticals had indeed suffered inexplicable delays and patent prob-
lems.

You don’t even know exactly what you have done, but already you have reported it,
patented it, and sold it.

—DMichael Crichton, Jurassic Park (1991)
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3.31 A Unification

Dictionary-based methods and methods based on prediction approach the problem of
data compression from two different directions. Any method based on prediction predicts
(i.e., assigns probability to) the current symbol based on its order-N context (the N
symbols preceding it). Such a method normally stores many contexts of different sizes
in a data structure and has to deal with frequency counts, probabilities, and probability
ranges. It then uses arithmetic coding to encode the entire input stream as one large
number. A dictionary-based method, on the other hand, works differently. It identifies
the next phrase in the input stream, stores it in its dictionary, assigns it a code, and
continues with the next phrase. Both approaches can be used to compress data because
each obeys the general law of data compression, namely, to assign short codes to common
events (symbols or phrases) and long codes to rare events.

On the surface, the two approaches are completely different. A predictor deals with
probabilities, so it can be highly efficient. At the same time, it can be expected to
be slow, since it deals with individual symbols. A dictionary-based method deals with
strings of symbols (phrases), so it gobbles up the input stream faster, but it ignores
correlations between phrases, typically resulting in poorer compression.

The two approaches are similar because a dictionary-based method does use contexts
and probabilities (although implicitly) just by storing phrases in its dictionary and
searching it. The following discussion uses the LZW trie to illustrate this concept, but
the argument is valid for any dictionary-based method, no matter what the details of
its algorithm and its dictionary data structure.

Imagine the phrase abcdef . .. stored in an LZW trie (Figure 3.42a). We can think
of the substring abcd as the order-4 context of e. When the encoder finds another
occurrence of abcde. .. in the input stream, it will locate our phrase in the dictionary,
parse it symbol by symbol starting at the root, get to node e, and continue from there,
trying to match more symbols. Eventually, the encoder will get to a leaf, where it
will add another symbol and allocate another code. We can think of this process as
adding a new leaf to the subtree whose root is the e of abcde. ... Every time the string
abcde becomes the prefix of a parse, both its subtree and its code space (the number
of codes associated with it) get bigger by 1. It therefore makes sense to assign node e a
probability depending on the size of its code space, and the above discussion shows that
the size of the code space of node e (or, equivalently, string abcde) can be measured by
counting the number of nodes of the subtree whose root is e. This is how probabilities
can be assigned to nodes in any dictionary tree.

The ideas of Glen Langdon in the early 1980s (see [Langdon 83] but notice that
his equation (8) is wrong; it should read P(y|s) = c(s)/c(s - y); [Langdon 84] is perhaps
more useful) led to a simple way of associating probabilities not just to nodes but also
to edges in a dictionary tree. Assigning probabilities to edges is more useful, since
the edge from node e to node f, for example, signifies an £ whose context is abcde.
The probability of this edge is thus the probability that an £ will follow abcde in the
input stream. The fact that these probabilities can be calculated in a dictionary tree
shows that every dictionary-based data compression algorithm can be “simulated” by
a prediction algorithm (but notice that the converse is not true). Algorithms based on
prediction are, in this sense, more general, but the important fact is that these two
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Figure 3.42: Defining Probabilities in a Dictionary Tree.

seemingly different classes of compression methods can be unified by the observations
listed here.

The process whereby a dictionary encoder slides down from the root of its dictionary
tree, parsing a string of symbols, can now be given a different interpretation. We can
visualize it as a sequence of making predictions for individual symbols, computing codes
for them, and combining the codes into one longer code, which is eventually written
on the compressed stream. It is as if the code generated by a dictionary encoder for a
phrase is actually made up of small chunks, each a code for one symbol.

The rule for calculating the probability of the edge e — f is to count the number
of nodes in the subtree whose root is f (including node f itself) and divide by the
number of nodes in the subtree of e. Figure 3.42b shows a typical dictionary tree with
the strings aab, baba, babc, and cac. The probabilities associated with every edge are
also shown and should be easy for the reader to verify. Note that the probabilities of
sibling subtrees don’t add up to 1. The probabilities of the three subtrees of the root,
for example, add up to 11/12. The remaining 1/12 is assigned to the root itself and
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represents the probability that a fourth string will eventually start at the root. These
“missing probabilities” are shown as horizontal lines in Figure 3.42c.

The two approaches, dictionary and prediction, can be combined in a single com-
pression method. The LZP method of Section 3.16 is one example; the LZRW4 method
(Section 3.11) is another. These methods work by considering the context of a symbol
before searching the dictionary.

Comparisons date. Adoption screams. Co-ordinates maps.
Darn! as composite. Is mono-spaced art. Composed as train.
Promised as on act. Oops and matrices. Promised to a scan.

—Anagrams of data compression
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4
Image Compression

The first part of this chapter discusses the basic features and types of digital images and
the main approaches to image compression. This is followed by a description of about
30 different compression methods. The author would like to start with the following
observations:

1. Why were these particular methods included in the book, while others were left
out? The simple answer is: Because of the documentation available to the author.
Image compression methods that are well documented were included. Methods that are
proprietary, or whose documentation was not clear to the author, were left out.

2. The treatment of the various methods is uneven. This, again, reflects the documenta-
tion available to the author. Some methods have been documented by their developers
in great detail, and this is reflected in this chapter. Where no detailed documentation
was available for a compression algorithm, only its basic principles are outlined here.
3. There is no attempt to compare the various methods described here. This is because
most image compression methods have been designed for a specific type of image, and
also because of the practical difficulties of getting all the software and adapting it to run
on the same platform.

4. The compression methods described in this chapter are not arranged in any particular
order. After much thought and many trials, the author gave up any hope of sorting the
compression methods in any reasonable way. Readers looking for any particular method
may consult the table of contents and the detailed index to easily locate it.

A digital image is a rectangular array of dots, or picture elements, arranged in m
rows and n columns. The expression m x n is called the resolution of the image, and the
dots are called pizels (except in the cases of fax images and video compression, where
they are referred to as pels). The term “resolution” is sometimes also used to indicate
the number of pixels per unit length of the image. Thus, dpi stands for dots per inch.
For the purpose of image compression it is useful to distinguish the following types of
images:
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1. A bi-level (or monochromatic) image. This is an image where the pixels can have one
of two values, normally referred to as black and white. Each pixel in such an image is
represented by one bit, making this the simplest type of image.

2. A grayscale image. A pixel in such an image can have one of the n values 0 through
n — 1, indicating one of 2™ shades of gray (or shades of some other color). The value
of n is normally compatible with a byte size; i.e., it is 4, 8, 12, 16, 24, or some other
convenient multiple of 4 or of 8. The set of the most-significant bits of all the pixels is
the most-significant bitplane. Thus, a grayscale image has n bitplanes.

3. A continuous-tone image. This type of image can have many similar colors (or
grayscales). When adjacent pixels differ by just one unit, it is hard or even impossible
for the eye to distinguish their colors. As a result, such an image may contain areas
with colors that seem to vary continuously as the eye moves along the area. A pixel
in such an image is represented by either a single large number (in the case of many
grayscales) or three components (in the case of a color image). A continuous-tone
image is normally a natural image (natural as opposed to artificial) and is obtained by
taking a photograph with a digital camera, or by scanning a photograph or a painting.
Figures 4.53 through 4.56 are typical examples of continuous-tone images. A general
survey of lossless compression of this type of images is [Carpentieri et al. 00].

4. A discrete-tone image (also called a graphical image or a synthetic image). This is
normally an artificial image. It may have a few colors or many colors, but it does not
have the noise and blurring of a natural image. Examples are an artificial object or
machine, a page of text, a chart, a cartoon, or the contents of a computer screen. (Not
every artificial image is discrete-tone. A computer-generated image that’s meant to look
natural is a continuous-tone image in spite of its being artificially generated.) Artificial
objects, text, and line drawings have sharp, well-defined edges, and are therefore highly
contrasted from the rest of the image (the background). Adjacent pixels in a discrete-
tone image often are either identical or vary significantly in value. Such an image does
not compress well with lossy methods, because the loss of just a few pixels may render
a letter illegible, or change a familiar pattern to an unrecognizable one. Compression
methods for continuous-tone images often do not handle sharp edges very well, so special
methods are needed for efficient compression of these images. Notice that a discrete-tone
image may be highly redundant, since the same character or pattern may appear many
times in the image. Figure 4.57 is a typical example of a discrete-tone image.

5. A cartoon-like image. This is a color image that consists of uniform areas. Each area
has a uniform color but adjacent areas may have very different colors. This feature may
be exploited to obtain excellent compression.

Whether an image is treated as discrete or continuous is usually dictated by the depth
of the data. However, it is possible to force an image to be continuous even if it would
fit in the discrete category. (From www.genaware.com)

It is intuitively clear that each type of image may feature redundancy, but they are
redundant in different ways. This is why any given compression method may not perform
well for all images, and why different methods are needed to compress the different image
types. There are compression methods for bi-level images, for continuous-tone images,
and for discrete-tone images. There are also methods that try to break an image up into
continuous-tone and discrete-tone parts, and compress each separately.
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Modern computers employ graphics extensively. Window-based operating systems dis-
play the disk’s file directory graphically. The progress of many system operations, such
as downloading a file, may also be displayed graphically. Many applications provide a
graphical user interface (GUI), which makes it easier to use the program and to interpret
displayed results. Computer graphics is used in many areas in everyday life to convert
many types of complex information to images. Thus, images are important, but they
tend to be big! Modern hardware can display many colors, which is why it is common
to have a pixel represented internally as a 24-bit number, where the percentages of red,
green, and blue occupy 8 bits each. Such a 24-bit pixel can specify one of 224 ~ 16.78
million colors. As a result, an image at a resolution of 512 x 512 that consists of such
pixels occupies 786,432 bytes. At a resolution of 1024 x 1024 it becomes four times as
big, requiring 3,145,728 bytes. Videos are also commonly used in computers, making
for even bigger images. This is why image compression is so important. An important
feature of image compression is that it can be lossy. An image, after all, exists for people
to look at, so, when it is compressed, it is acceptable to lose image features to which
the eye is not sensitive. This is one of the main ideas behind the many lossy image
compression methods described in this chapter.

In general, information can be compressed if it is redundant. It has been mentioned
several times that data compression amounts to reducing or removing redundancy in the
data. With lossy compression, however, we have a new concept, namely compressing
by removing irrelevancy. An image can be lossy-compressed by removing irrelevant
information even if the original image does not have any redundancy.

Exercise 4.1: It would seem that an image with no redundancy is always random (and
therefore uninteresting). It that so?

The idea of losing image information becomes more palatable when we consider
how digital images are created. Here are three examples: (1) A real-life image may be
scanned from a photograph or a painting and digitized (converted to pixels). (2) An
image may be recorded by a digital camera that creates pixels and stores them directly
in memory. (3) An image may be painted on the screen by means of a paint program.
In all these cases, some information is lost when the image is digitized. The fact that
the viewer is willing to accept this loss suggests that further loss of information might
be tolerable if done properly.

(Digitizing an image involves two steps: sampling and quantization. Sampling an
image is the process of dividing the two-dimensional original image into small regions:
pixels. Quantization is the process of assigning an integer value to each pixel. Notice
that digitizing sound involves the same two steps, with the difference that sound is
one-dimensional.)

We present a simple process that can be employed to determine qualitatively the
amount of data loss in a compressed image. Given an image A, (1) compress it to B,
(2) decompress B to C, and (3) subtract D = C — A. If A was compressed without any
loss and decompressed properly, then C should be identical to A and image D should
be uniformly white. The more data was lost in the compression, the farther will D be
from uniformly white.
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How should an image be compressed? The compression techniques discussed in
previous chapters are RLE, scalar quantization, statistical methods, and dictionary-
based methods. By itself, none is very satisfactory for color or grayscale images (although
they may be used in combination with other methods). Here is why:

Section 1.4.1 shows how RLE can be used for (lossless or lossy) compression of
an image. This is simple, and it is used by certain parts of JPEG, especially by its
lossless mode. In general, however, the other principles used by JPEG produce much
better compression than does RLE alone. Facsimile compression (Section 2.13) uses RLE
combined with Huffman coding and obtains good results, but only for bi-level images.

Scalar quantization has been mentioned in Section 1.6. It can be used to compress
images, but its performance is mediocre. Imagine an image with 8-bit pixels. It can be
compressed with scalar quantization by cutting off the four least-significant bits of each
pixel. This yields a compression ratio of 0.5, not very impressive, and at the same time
reduces the number of colors (or grayscales) from 256 to just 16. Such a reduction not
only degrades the overall quality of the reconstructed image, but may also create bands
of different colors, a noticeable and annoying effect that’s illustrated here.

Imagine a row of 12 pixels with similar colors, ranging from 202 to 215. In binary
notation these values are
11010111 11010110 11010101 11010011 11010010 11010001 11001111 11001110 11001101 11001100 11001011 11001010.
Quantization will result in the 12 4-bit values

1101 1101 1101 1101 1101 1101 1100 1100 1100 1100 1100 1100,

which will reconstruct the 12 pixels

11010000 11010000 11010000 11010000 11010000 11010000 11000000 11000000 11000000 11000000 11000000 11000000.
The first six pixels of the row now have the value 11010000, = 208, while the next six
pixels are 11000000, = 192. If adjacent rows have similar pixels, the first six columns
will form a band, distinctly different from the band formed by the next six columns. This
banding, or contouring, effect is very noticeable to the eye, since our eyes are sensitive
to edges and breaks in an image.

One way to eliminate this effect is called improved grayscale (IGS) quantization.
It works by adding to each pixel a random number generated from the four rightmost
bits of previous pixels. Section 4.2.1 shows that the least-significant bits of a pixel are
fairly random, so IGS works by adding to each pixel randomness that depends on the
neighborhood of the pixel.

The method maintains an 8-bit variable, denoted by rsm, that’s initially set to zero.
For each 8-bit pixel P to be quantized (except the first one), the IGS method does the
following:

1. Set rsm to the sum of the eight bits of P and the four rightmost bits of rsm. However,
if P has the form 1111zxzx, set rsm to P.

2. Write the four leftmost bits of rsm on the compressed stream. This is the compressed
value of P. IGS is thus not exactly a quantization method, but a variation of scalar
quantization.

The first pixel is quantized in the usual way, by dropping its four rightmost bits.
Table 4.1 illustrates the operation of IGS.

Vector quantization can be used more successfully to compress images. It is dis-
cussed in Section 4.14.
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Compressed
Pixel Value rsm value
1 1010 0110 0000 0000 1010
2 1101 0010 1101 0010 1101
3 1011 0101 1011 0111 1011
4 1001 1100 1010 0011 1010
5 1111 0100 1111 0100 1111
6 1011 0011 1011 0111 1011

Table 4.1: lllustrating the IGS Method.

Statistical methods work best when the symbols being compressed have different
probabilities. An input stream where all symbols have the same probability will not
compress, even though it may not be random. It turns out that in a continuous-tone color
or grayscale image, the different colors or shades of gray may often have roughly the same
probabilities. This is why statistical methods are not a good choice for compressing such
images, and why new approaches are needed. Images with color discontinuities, where
adjacent pixels have widely different colors, compress better with statistical methods,
but it is not easy to predict, just by looking at an image, whether it has enough color
discontinuities.

= = An ideal vertical rule is shown in (a). In (b), the
] ] rule is assumed to be perfectly digitized into ten
= = pixels, laid vertically. However, if the image is
= = placed in the scanner slightly slanted, the scanning
] [ | may be imperfect, and the resulting pixels might
= = look as in (c).

—
&
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—~
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—
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Figure 4.2: Perfect and Imperfect Digitizing.

Dictionary-based compression methods also tend to be unsuccessful in dealing with
continuous-tone images. Such an image typically contains adjacent pixels with similar
colors, but does not contain repeating patterns. Even an image that contains repeated
patterns such as vertical lines may lose them when digitized. A vertical line in the
original image may become slightly slanted when the image is digitized (Figure 4.2), so
the pixels in a scan row may end up having slightly different colors from those in adjacent
rows, resulting in a dictionary with short strings. (This problem may also affect curved
edges.)

Another problem with dictionary compression of images is that such methods scan
the image row by row, and therefore may miss vertical correlations between pixels. An
example is the two simple images of Figure 4.3a,b. Saving both in GIF89, a dictionary-
based graphics file format (Section 3.19), has resulted in file sizes of 1053 and 1527 bytes,
respectively, on the author’s computer.
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(a) (b)

Figure 4.3: Dictionary Compression of Parallel Lines.

Traditional methods are therefore unsatisfactory for image compression, so this
chapter discusses novel approaches. They are all different, but they remove redundancy
from an image by using the following principle (see also Section 1.4):

The Principle of Image Compression. If we select a pixel in the image at
random, there is a good chance that its neighbors will have the same color or very
similar colors.

Image compression is therefore based on the fact that neighboring pixels are highly
correlated. This correlation is also called spatial redundancy.

Here is a simple example that illustrates what can be done with correlated pixels.
The following sequence of values gives the intensities of 24 adjacent pixels in a row of a
continuous-tone image:

12, 17, 14, 19, 21, 26, 23, 29, 41, 38, 31, 44, 46, 57, 53, 50, 60, 58, 55, 54, 52, 51, 56, 60.

Only two of the 24 pixels are identical. Their average value is 40.3. Subtracting pairs
of adjacent pixels results in the sequence

12,5, =3, 5,2, 4, =3, 6, 11, =3, —7, 13, 4, 11, —4, —3, 10, —2, =3, 1, -2, —1, 5, 4.

The two sequences are illustrated in Figure 4.4.

Figure 4.4: Values and Differences of 24 Adjacent Pixels.

The sequence of difference values has three properties that illustrate its compression
potential: (1) The difference values are smaller than the original pixel values. Their
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average is 2.58. (2) They repeat. There are just 15 distinct difference values, so in
principle they can be coded by four bits each. (3) They are decorrelated: adjacent
difference values tend to be different. This can be seen by subtracting them, which
results in the sequence of 24 second differences

12, -7, -8, 8, =3, 2, -7, 9,5, —14, —4, 20, —11, 7, —15, 1, 13, =12, —1, 4, —3, 1, 6, 1.

They are larger than the differences themselves.

Figure 4.5 provides another illustration of the meaning of the words “correlated
quantities.” A 32 x 32 matrix A is constructed of random numbers, and its elements are
displayed in part (a) as shaded squares. The random nature of the elements is obvious.
The matrix is then inverted and stored in B, which is shown in part (b). This time,
there seems to be more structure to the 32 x 32 squares. A direct calculation using
Equation (4.1) shows that the cross-correlation between the top two rows of A is 0.0412,
whereas the cross-correlation between the top two rows of B is —0.9831. The elements
of B are correlated since each depends on all the elements of A

R— Ny TiYi — D Ti) Y . (4.1)
Vi al = (C )l v — (2]

5 10 15 20 25 30

(a) (b)
Figure 4.5: Maps of (a) a Random Matrix and (b) its Inverse.
n=32; a=rand(n); imagesc(a); colormap(gray)

b=inv(a); imagesc(b)

Matlab Code for Figure 4.5.

o Exercise 4.2: Use mathematical software to illustrate the covariance matrices of (1) a
matrix with correlated values and (2) a matrix with decorrelated values.

Once the concept of correlated quantities is familiar, we start looking for a cor-
relation test. Given a matrix M, a statistical test is needed to determine whether its
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elements are correlated or not. The test is based on the statistical concept of covariance.
If the elements of M are decorrelated (i.e., independent), then the covariance of any two
different rows and any two different columns of M will be zero (the covariance of a row
or of a column with itself is always 1). As a result, the covariance matrix of M (whether
covariance of rows or of columns) will be diagonal. If the covariance matrix of M is not
diagonal, then the elements of M are correlated. The statistical concepts of variance,
covariance, and correlation are discussed in any text on statistics.

The principle of image compression has another aspect. We know from experience
that the brightness of neighboring pixels is also correlated. Two adjacent pixels may
have different colors. One may be mostly red, and the other may be mostly green.
Yet if the red component of the first is bright, the green component of its neighbor
will, in most cases, also be bright. This property can be exploited by converting pixel
representations from RGB to three other components, one of which is the brightness,
and the other two represent color. One such format (or color space) is YCbCr, where
Y (the “luminance” component) represents the brightness of a pixel, and Cb and Cr
define its color. This format is discussed in Section 4.8.1, but its advantage is easy to
understand. The eye is sensitive to small changes in brightness but not to small changes
in color. Thus, losing information in the Cb and Cr components compresses the image
while introducing distortions to which the eye is not sensitive. Losing information in
the Y component, on the other hand, is very noticeable to the eye.

4.2 Approaches to Image Compression

An image compression method is normally designed for a specific type of image, and
this section lists various approaches to compressing images of different types. Only the
general principles are discussed here; specific methods are described in the remainder of
this chapter.

Approach 1: This is appropriate for bi-level images. A pixel in such an image is
represented by one bit. Applying the principle of image compression to a bi-level image
therefore means that the immediate neighbors of a pixel P tend to be identical to P.
Thus, it makes sense to use run-length encoding (RLE) to compress such an image. A
compression method for such an image may scan it in raster order (row by row) and
compute the lengths of runs of black and white pixels. The lengths are encoded by
variable-size (prefix) codes and are written on the compressed stream. An example of
such a method is facsimile compression, Section 2.13.

It should be stressed that this is just an approach to bi-level image compression. The

details of specific methods vary. For instance, a method may scan the image column by
column or in zigzag (Figure 1.8b), it may convert the image to a quadtree (Section 4.30),
or it may scan it region by region using a space-filling curve (Section 4.32).
Approach 2: Also for bi-level images. The principle of image compression tells us that
the neighbors of a pixel tend to be similar to the pixel. We can extend this principle
and conclude that if the current pixel has color ¢ (where ¢ is either black or white), then
pixels of the same color seen in the past (and also those that will be found in the future)
tend to have the same immediate neighbors.
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This approach looks at n of the near neighbors of the current pixel and considers
them an n-bit number. This number is the context of the pixel. In principle there can
be 2™ contexts, but because of image redundancy we expect them to be distributed in a
nonuniform way. Some contexts should be common while others will be rare.

The encoder counts how many times each context has already been found for a pixel
of color ¢, and assigns probabilities to the contexts accordingly. If the current pixel has
color ¢ and its context has probability p, the encoder can use adaptive arithmetic coding
to encode the pixel with that probability. This approach is used by JBIG (Section 4.11).

Next, we turn to grayscale images. A pixel in such an image is represented by n

bits and can have one of 2™ values. Applying the principle of image compression to a
grayscale image implies that the immediate neighbors of a pixel P tend to be similar to
P, but are not necessarily identical. Thus, RLE should not be used to compress such
an image. Instead, two approaches are discussed.
Approach 3: Separate the grayscale image into n bi-level images and compress each
with RLE and prefix codes. The principle of image compression seems to imply intu-
itively that two adjacent pixels that are similar in the grayscale image will be identical
in most of the n bi-level images. This, however, is not true, as the following example
makes clear. Imagine a grayscale image with n = 4 (i.e., 4-bit pixels, or 16 shades of
gray). The image can be separated into four bi-level images. If two adjacent pixels in
the original grayscale image have values 0000 and 0001, then they are similar. They
are also identical in three of the four bi-level images. However, two adjacent pixels with
values 0111 and 1000 are also similar in the grayscale image (their values are 7 and 8,
respectively) but differ in all four bi-level images.

This problem occurs because the binary codes of adjacent integers may differ by
several bits. The binary codes of 0 and 1 differ by one bit, those of 1 and 2 differ by two
bits, and those of 7 and 8 differ by four bits. The solution is to design special binary
codes such that the codes of any consecutive integers 7 and i + 1 will differ by one bit
only. An example of such a code is the reflected Gray codes of Section 4.2.1.
Approach 4: Use the context of a pixel to predict its value. The context of a pixel
is the values of some of its neighbors. We can examine some neighbors of a pixel P,
compute an average A of their values, and predict that P will have the value A. The
principle of image compression tells us that our prediction will be correct in most cases,
almost correct in many cases, and completely wrong in a few cases. We can say that the
predicted value of pixel P represents the redundant information in P. We now calculate
the difference

A p_ 4
and assign variable-size (prefix) codes to the different values of A such that small values
(which we expect to be common) are assigned short codes and large values (which are
expected to be rare) are assigned long codes. If P can have the values 0 through m — 1,
then values of A are in the range [—(m — 1), 4+(m — 1)], and the number of codes needed
is2(m—1)+1or2m—1.

Experiments with a large number of images suggest that the values of A tend to
be distributed according to the Laplace distribution (Figure 4.128b). A compression
method can, therefore, use this distribution to assign a probability to each value of A,
and use arithmetic coding to encode the A values very efficiently. This is the principle
of the MLP method (Section 4.21).
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The context of a pixel may consist of just one or two of its immediate neighbors.

However, better results may be obtained when several neighbor pixels are included in the
context. The average A in such a case should be weighted, with near neighbors assigned
higher weights (see, for example, Table 4.126). Another important consideration is the
decoder. In order for it to decode the image, it should be able to compute the context
of every pixel. This means that the context should employ only pixels that have already
been encoded. If the image is scanned in raster order, the context should include only
pixels located above the current pixel or on the same row and to its left.
Approach 5: Transform the values of the pixels and encode the transformed values.
The concept of a transform, as well as the most important transforms used in image
compression, are discussed in Section 4.4. Chapter 5 is devoted to the wavelet trans-
form. Recall that compression is achieved by reducing or removing redundancy. The
redundancy of an image is caused by the correlation between pixels, so transforming the
pixels to a representation where they are decorrelated eliminates the redundancy. It is
also possible to think of a transform in terms of the entropy of the image. In a highly
correlated image, the pixels tend to have equiprobable values, which results in maxi-
mum entropy. If the transformed pixels are decorrelated, certain pixel values become
common, thereby having large probabilities, while others are rare. This results in small
entropy. Quantizing the transformed values can produce efficient lossy image compres-
sion. We want the transformed values to be independent because coding independent
values makes it simpler to construct a statistical model.

We now turn to color images. A pixel in such an image consists of three color
components, such as red, green, and blue. Most color images are either continuous-tone
or discrete-tone.

Approach 6: The principle of this approach is to separate a continuous-tone color image
into three grayscale images and compress each of the three separately, using approaches
3, 4, or 5.

For a continuous-tone image, the principle of image compression implies that adja-
cent pixels have similar, although perhaps not identical, colors. However, similar colors
do not mean similar pixel values. Consider, for example, 12-bit pixel values where each
color component is expressed in four bits. Thus, the 12 bits 1000]0100/0000 represent
a pixel whose color is a mixture of eight units of red (about 50%, since the maximum
is 15 units), four units of green (about 25%), and no blue. Now imagine two adjacent
pixels with values 0011|0101/0011 and 0010{0101]|0011. They have similar colors, since
only their red components differ, and only by one unit. However, when considered as
12-bit numbers, the two numbers 001101010011 and 001001010011 are very different,
since they differ in one of their most significant bits.

An important feature of this approach is to use a luminance chrominance color rep-
resentation instead of the more common RGB. The concepts of luminance and chromi-
nance are discussed in Section 4.8.1 and in [Salomon 99]. The advantage of the luminance
chrominance color representation is that the eye is sensitive to small changes in lumi-
nance but not in chrominance. This allows the loss of considerable data in the chromi-
nance components, while making it possible to decode the image without a significant
visible loss of quality.

Approach 7: A different approach is needed for discrete-tone images. Recall that such
an image contains uniform regions, and a region may appear several times in the image.
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A good example is a screen dump. Such an image consists of text and icons. Each
character of text and each icon is a region, and any region may appear several times
in the image. A possible way to compress such an image is to scan it, identify regions,
and find repeating regions. If a region B is identical to an already found region A, then
B can be compressed by writing a pointer to A on the compressed stream. The block
decomposition method (FABD, Section 4.28) is an example of how this approach can be
implemented.
Approach 8: Partition the image into parts (overlapping or not) and compress it by
processing the parts one by one. Suppose that the next unprocessed image part is part
number 15. Try to match it with parts 1-14 that have already been processed. If part
15 can be expressed, for example, as a combination of parts 5 (scaled) and 11 (rotated),
then only the few numbers that specify the combination need be saved, and part 15
can be discarded. If part 15 cannot be expressed as a combination of already-processed
parts, it is declared processed and is saved in raw format.

This approach is the basis of the various fractal methods for image compression.
It applies the principle of image compression to image parts instead of to individual
pixels. Applied this way, the principle tells us that “interesting” images (i.e., those that
are being compressed in practice) have a certain amount of self similarity. Parts of the
image are identical or similar to the entire image or to other parts.

Image compression methods are not limited to these basic approaches. This book
discusses methods that use the concepts of context trees, Markov models (Section 8.8),
and wavelets, among others. In addition, the concept of progressive image compression
(Section 4.10) should be mentioned, since it adds another dimension to the field of image
compression.

4.2.1 Gray Codes

An image compression method that has been developed specifically for a certain type
of image can sometimes be used for other types. Any method for compressing bi-
level images, for example, can be used to compress grayscale images by separating the
bitplanes and compressing each individually, as if it were a bi-level image. Imagine, for
example, an image with 16 grayscale values. Each pixel is defined by four bits, so the
image can be separated into four bi-level images. The trouble with this approach is
that it violates the general principle of image compression. Imagine two adjacent 4-bit
pixels with values 7 = 01115 and 8 = 1000,. These pixels have close values, but when
separated into four bitplanes, the resulting 1-bit pixels are different in every bitplane!
This is because the binary representations of the consecutive integers 7 and 8 differ in
all four bit positions. In order to apply any bi-level compression method to grayscale
images, a binary representation of the integers is needed where consecutive integers have
codes differing by one bit only. Such a representation exists and is called reflected Gray
code (RGC). This code is easy to generate with the following recursive construction:
Start with the two 1-bit codes (0, 1). Construct two sets of 2-bit codes by duplicating
(0,1) and appending, either on the left or on the right, first a zero, then a one, to the
original set. The result is (00,01) and (10,11). We now reverse (reflect) the second set,
and concatenate the two. The result is the 2-bit RGC (00,01, 11, 10); a binary code of
the integers 0 through 3 where consecutive codes differ by exactly one bit. Applying the
rule again produces the two sets (000,001,011,010) and (110,111,101, 100), which are
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concatenated to form the 3-bit RGC. Note that the first and last codes of any RGC also
differ by one bit. Here are the first three steps for computing the 4-bit RGC:

Add a zero (0000,0001,0011,0010,0110,0111,0101,0100),
Add a one (1000, 1001, 1011, 1010, 1110, 1111, 1101, 1100),
reflect (1100,1101,1111,1110, 1010, 1011, 1001, 1000).

43210 Gray 43210 Gray 43210 Gray 43210 Gray
00000 00000 01000 10010 10000 00011 11000 10001
00001 00100 01001 10110 10001 00111 11001 10101
00010 01100 01010 11110 10010 01111 11010 11101
00011 01000 01011 11010 10011 01011 11011 11001
00100 11000 01100 01010 10100 11011 11100 01001
00101 11100 01101 01110 10101 11111 11101 01101
00110 10100 01110 00110 10110 10111 11110 00101
00111 10000 01111 00010 10111 10011 11111 00001

Table 4.6: First 32 Binary and Reflected Gray Codes.

function b=rgc(a,i)

[r,c]l=size(a);

b=[zeros(r,1),a; ones(r,1),flipud(a)];
if i>1, b=rgc(b,i-1); end;

Code for Table 4.6.

Table 4.6 shows how individual bits change when moving through the binary codes
of the first 32 integers. The 5-bit binary codes of these integers are listed in the odd-
numbered columns of the table, with the bits of integer ¢ that differ from those of i — 1
shown in boldface. It is easy to see that the least-significant bit (bit by) changes all
the time, bit b; changes for every other number, and, in general, bit b; changes every
k integers. The even-numbered columns list one of the several possible reflected Gray
codes for these integers. The table also lists a recursive Matlab function to compute
RGC.

Exercise 4.3: It is also possible to generate the reflected Gray code of an integer n
with the following nonrecursive rule: Exclusive-OR n with a copy of itself that’s logically
shifted one position to the right. In the C programming language this is denoted by
n~ (n>>1). Use this expression to construct a table similar to Table 4.6.

The conclusion is that the most-significant bitplanes of an image obey the principle
of image compression more than the least-significant ones. When adjacent pixels have
values that differ by one unit (such as p and p+ 1), chances are that the least-significant
bits are different and the most-significant ones are identical. Any image compression
method that compresses bitplanes individually should therefore treat the least-significant
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clear;

filename=’parrots128’; dim=128;
fid=fopen(filename,’r’);
img=fread(fid, [dim,dim])’;
mask=1; % between 1 and 8

nimg=bitget (img,mask) ;
imagesc(nimg), colormap(gray)

Binary code

clear;

filename=’parrots128’; dim=128;
fid=fopen(filename,’r’);
img=fread(fid, [dim,dim])’;
mask=1 % between 1 and 8
a=bitshift (img,-1);
b=bitxor(img,a);

nimg=bitget (b,mask) ;
imagesc(nimg), colormap(gray)
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Figure 4.7: Matlab Code to Separate Image Bitplanes.

bitplanes differently from the most-significant ones, or should use RGC instead of the
binary code to represent pixels. Figures 4.9, 4.10, and 4.11 (prepared